Draughts Game Using a Minimax algorithm

Rohit Pai
Candidate Number: 198771
University of Sussex

December 9, 2021

Contents

(1 _Introduction|
[2__Description of program functionality]|

2.1 ameplay| e e e e e e e
[2.1.1 Tnteractive checkers gameplay (Human vs. Computer) of some sort]
2.1.2 Different levels of verifiably eftective Al cleverness, adjustable by the user|
2.2 Search algorithm|
2.2.1 Appropriate and efficient state representation|
2.2.2 easonable successor function to generate TNOVES| . v v v v e e e e e e e e

2.2.3 Mimimax evaluationl e

2.3.2 Automatic check for valid user moves
2.3.3 Rejection of invalid user moves| L L.

2.3.4 Forced Capture|

[2.4.1 Multi-leg capturing moves for theuser|

2.4.2 ulti-leg capturing moves for the AI|
[2.4.3 King conversion at baseline (The king’s row) as per the normal rules|

[2.4.4 Regicide - if a normal piece manages to capture a king, it is instantly crowned King

2.4.5 Some kind of help feature that can be enabled at the user’s request to get hints

[about available moves, given the current game state.|

2.5 Some kind of board representation displayed on screen|o
Fﬁ Theinterface properly updates the display after completed moves (User and Al moves)| . .
2.7 Mouse interaction focus, e.g., click to select & click to place, or drag & drop (better)| . . .
[2.87 GUI pauses appropriately to show the intermediate steps of any multi-leg moves|
[2.9 Dedicated display of the rules (e.g., a corresponding button opening a pop-up window)| . .

Abstract

1 Introduction

The task was to build a draughts game which had a GUI and that could be played against an Al
with varying difficulty levels. Originally I did not have a good idea on how to start the building the
game. I found a tutorial series which covered the basic game mechanics and class structure [4]. To
then understand how to develop the minimax algorithm I looked at Sebastian Leagues video [3] and
the part 2 series of the draughts tutorial series [I] was used as a guide. Although YouTube tutorial
videos have been used, lots of the code have been adapted to meet the marking criteria. I have used
python to create the game as python is non typed language meaning it should be easier to make a
game like this without having to deal type errors.

I have created 5 classes which house the different functions to make the game work. The board
class keeps a track of the board and the board state. The piece class keeps track of an individual
piece and its states e.g. what colour and whether it is king or not. The game manager class keeps
track of the whole game and drawing the actual GUI on the screen. The minimax class houses the
minimax method and it’s respective helper methods. The main.py file holds the main menu loop
and the main game loop and 2 helper functions. The constants.py file holds static variables i.e. the
variables that are not going to be changed at all. The main menu was created with the help of this
video [2]. The general structure of the menu design was taken from the video and then modified to
fit the draughts game.

2 Description of program functionality

2.1 Gameplay

2.1.1 Interactive checkers gameplay (Human vs. Computer) of some sort

See figures below

Draughts Draughts

(a) Main game board with the pieces (b) Main game with a green king

Figure 1: Gameplay

2.1.2 Different levels of verifiably effective AI cleverness, adjustable by the user

To select a difficulty level, either easy medium or hard have to be selected in the main menu. After
the difficulty level is selected the game loads up and the user can start playing the game.

Draughts

main menu

Figure 2: In game menu system

2.2 Search algorithm
2.2.1 Appropriate and efficient state representation

The main game has 4 states that it can be in. The initial state is when the game starts and all the
pieces are the beginning and it’s the players turn to move but the player has not started to move
yet. See figure[3] The next state is when the player has selected a piece to move but has not moved

Draughts

Figure 3: Initial state with the player’s turn at hand and no move has been made yet.

vet. See figure[d] The next state is when the Al needs to move. Since the Al is instantaneous, this

Draughts

Figure 4: The player has selected a piece to move but not moved yet. The available moves are shown in
blue

state cannot be seen unless the depth of the Al is set to a very high number, where the computer
hardware needs time to compute the result. The final state is when the player or Al has won the
game, this can be found out by calling the winner function in the game manager class which calls
the winner function in the board class. This function checks to see if there are no more green or
white pieces on the board and returns the piece that has won.

2.2.2 Reasonable successor function to generate AI moves

The implementation of minimax in this game accounts for a successor to generate Al moves. See
minimax class and the Al function inside it in the appendix. The function accounts for the successor
based on the number of pieces left on the board. It has a higher chance of trying to become king if
the AI benefits from it i.e. remove more player pieces from the board and obtain more king pieces
for the Al

2.2.3 Minimax evaluation

In the minimax implementation, the current move that the AI or player can make is being evaluated
At the beginning, the AT assumes the player has the upper hand and tries to find a move which works
in favour of the Al. The algorithm keeps trying to find the best possible move for all pieces and then
compares those best moves to get a single best move. It evaluates until the depth limit is reached.
When the limit has been reached, the score of the board is calculated and returned alongside the
modified board with the moved piece on it.

2.2.4 Appropriate use of heuristics

The AI wants to get rid of more player pieces. The minimax algorithm returns the result of the
function scoreOfTheBoard and the modified board. When the AI function inside the minimax class
runs, it runs recursively until the depth has reached 0 and then the score of the board is calculated.
The score of the board returns a king incentivised value either positive or negative. This is returned
back via the recursive nature and then evaluated against current best move evaluation.

2.3 Validation of moves
2.3.1 No invalid moves carried out by the AI

During the minimax algorithm getValidMoves function is run on each of the pieces for the colour, in
this case white. What getValidMoves, in the board class, calculates is all the valid moves for a given
piece based on the rest of the pieces on the board until it finds a space on the board where there

are two blank spaces i.e. spaces that are set as None. It then stores these into a dictionary with the
keys being the row and column as a tuple and values being the list of jump-able pieces. Then the
AT would use this to calculate what’s best move the Al.

2.3.2 Automatic check for valid user moves

The same function getValidMoves, in the board class, is also run on the player which returns the same
dictionary but the player would decide which move to make. See figure 4 During getValidMoves,
both the left and right moves are calculated and then returned for the given jump and piece.

2.3.3 Rejection of invalid user moves

Since getValidMoves, in the board class, returns all the available moves on a specific piece and the
board shows what the available moves are, the player can not then select a move that is not within
the available moves. After selected a piece, the available moves are shown in blue, see figure [4] the
player can then choose one of the available moves. If the player selects a space on the board, the
space is then automatically checked to see if it is contained within available moves, if it is, move the
player to the new space otherwise it does nothing, allowing the user to select again. The game will
not move the piece until the player has selected one of the valid moves.

2.3.4 Forced Capture

When you select a piece, getValidMoves is run and then the valid moves is returned. Then in the
move function the valid moves are filtered out to either include all the moves meaning none of them
can capture anything, or include all the moves that can capture an Al piece. See figure

Draughts.

Figure 5: Only the capturable moves are shown

2.4 Other Features

2.4.1 Multi-leg capturing moves for the user

When the player has the ability to complete a multi-leg move the blue circles will be shown in the
respective spaces on the board. See figure[6] The player can then select the moves within the multi-
leg capture to show intermediate steps or the final position to jump straight there and complete a
multi-leg jump

2.4.2 Multi-leg capturing moves for the Al

When the AT has the ability to complete a multi-leg move, it will favour this move over other moves
because the function scoreOfTheBoard will evaluate the move and it will consider it better for the
Al since more player pieces have been removed from the board in the process.

Draughts

Figure 6: Multi-leg capturing represented by the blue circles on the board.

2.4.3 King conversion at baseline (The king’s row) as per the normal rules

When a player piece, a green piece, or an Al piece, white piece, has reached the opposite sides of the
board, the current piece is then converted to a king. See figure The piece class has a boolean to
denote whether a piece is king or not and then the piece is then rendered based on that. If the piece
is king it can move in all four directions. In the getValidMoves function the two if statements check
whether a piece is the given colour or king. If it is king, it checks both left and right of both up and
down movements.

2.4.4 Regicide - if a normal piece manages to capture a king, it is instantly
crowned king and then the current turn ends.
When the player jumps over a king, the player is then made king. This is all completed in the move

function. In the function, the current jumped over piece is checked to see if it is king and if it is then
the player or Al piece is then converted to a king and then move then continues as normal.

2.4.5 Some kind of help feature that can be enabled at the user’s request to get
hints about available moves, given the current game state.

When a player selects a piece to move, getValidMoves is run, this then calculates the given valid
moves for a piece. By default the valid moves are then drawn on the board as blue circles using the
drawValidMoves function. This function then draws a circle at the position of the valid move and
then when a piece is moved the board is updated and then drawn valid moves get removed.

2.5 Some kind of board representation displayed on screen

See all the figures in this report.

2.6 Theinterface properly updates the display after completed moves
(User and AI moves)
The main game loop runs using a clock timer and runs every 60 seconds, meaning it can be thought

of like a game that runs at 60FPS. Which means the board then gets updated every frame. Once a
turn is fully finished, the gane runs the swapTurn function w

2.7 Mouse interaction focus, e.g., click to select & click to place, or
drag & drop (better)

The game uses a click to select & click to place method of movement. So, when a board square is
clicked, the x and y co-ordinates are then converted to the boards x and y and then the select method
is called with the respective x and y. The select function runs the getValidMoves function to get
what moves this piece can make, then stores the piece as class variable so that it can be acessed by
the same function when clicked on an empty space. Then to place, the select function checks if the
selected square on the board is within the valid moves, if it is then move the piece to the respective
place acounting for jumps and intermediate steps

2.8 GUI pauses appropriately to show the intermediate steps of any
multi-leg moves
When completing a multi-leg move, the middle step can be chosen and the game waits for the player

to make the next move. The move method checks to see if the position is within in the valid moves
and is an intermediate step, if it is, then don’t change turn otherwise change turn. See figure below

Draughts Draughts

(¢) Multi-leg after

Figure 7: Multi-leg movements

© 00Uk WN -

N DD = = b e e e
H O OO U kWO

2.9 Dedicated display of the rules (e.g., a corresponding button
opening a pop-up window)

To access the rules of the game, the help button in the main menu should be clicked. Then the help
window pops up, from here you can return back to main menu. See figure below

Draughts

Rules

Figure 8: Window showing the rules of the game

References

[1] Python Checkers AI Tutorial.

[2] DaFluffyPotato. Menus - Pygame Tutorial, January 2020.
3]

(4]

3] Sebastian Lague. Algorithms Explained — minimax and alpha-beta pruning, April 2018.

4] Tech With Tim. Pygame Checkers Tutorial, September 2020.

3 Appendix
3.1 main.py
import sys

import pygame

from draughts.constants import WIDTH, HEIGHT, SQUARE_SIZE, WHITE
from draughts.gameManager import GameManager
from draughts.minimaxAlgorithm import minimax

FPS = 60
WIN = pygame. display .set-mode ((WIDTH, HEIGHT))
pygame. display .set_caption (” Draughts”)

def getRowColFromMouse (pos) :
X, y = pos
row = y // SQUARE.SIZE
col = x // SQUARE_SIZE
return row, col

def drawText(text, font, color, surface, x, y):

https://www.youtube.com/watch?v=RjdrFHEgV2o&list=PLzMcBGfZo4-myY28wdQuJDBi8pCt-GIj6&index=
https://www.youtube.com/watch?v=0RryiSjpJn0
https://www.youtube.com/watch?v=l-hh51ncgDI
https://www.youtube.com/playlist?list=PLzMcBGfZo4-lkJr3sqpikNyVzbNZLRiT3

def

def

textobj = font.render(text, 1, color)
textrect = textobj.get_rect ()
textrect.topleft = (x, y)
surface.blit (textobj, textrect)

drawMultiLineText (surface , text, pos, font, color=pygame. Color(’black’)):
words = [word.split(’ ’) for word in text.splitlines ()] # 2D array where
each row is a list of words.
space = font.size(’ ’)[0] # The width of a space.
max_width, max_height = surface.get_size ()
X, y = pos
for line in words:
for word in line:
word_surface = font.render(word, 0, color)
word_width, word_height = word_surface.get_size ()
if x + word_-width >= max_width:
x = pos[0] # Reset the z.
y += word_height # Start on new row.
surface.blit (word_surface, (x, y))
x += word_width 4 space
x = pos[0] # Reset the z.
y += word_height # Start on new row.

main () :

pygame. init ()

screen = pygame. display .set_mode ((WIDTH, HEIGHT))
menuClock = pygame.time. Clock ()

click = False

width = screen.get_width ()

font = pygame. font.SysFont(None, 25)

difficulty = 0

while True:
menu
screen. fill ((128, 128, 128))
drawText (’Main Menu’, font, (255, 255, 255), screen, width / 2, 20)

mx, my = pygame.mouse.get_pos ()

easy = pygame.Rect(width / 2 — 50, 100, 200, 50)
pygame.draw.rect (screen, (0, 255, 0), easy)

drawText (”easy”, font, (255, 255, 255), screen, width / 2, 100)
medium = pygame.Rect(width / 2 — 50, 200, 200, 50)
pygame.draw.rect (screen, (255, 125, 0), medium)

drawText (”"medium” , font, (255, 255, 255), screen, width / 2, 200)
hard = pygame.Rect(width / 2 — 50, 300, 200, 50)
pygame.draw.rect (screen, (255, 0, 0), hard)

drawText (”hard”, font, (255, 255, 255), screen, width / 2, 300)
rules = pygame.Rect(width / 2 — 50, 400, 200, 50)
pygame.draw.rect (screen, (0, 0, 255), rules)

drawText(” rules”, font, (255, 255, 255), screen, width / 2, 400)
quitGame = pygame.Rect(width / 2 — 50, 500, 200, 50)
pygame.draw.rect (screen, (0, 0, 0), quitGame)

drawText (” quit”, font, (255, 255, 255), screen, width / 2, 500)

if easy.collidepoint ((mx, my)):

if click:
difficulty =1
break
if medium. collidepoint ((mx, my)):
if click:
difficulty = 2
break
if hard.collidepoint ((mx, my)):
if click:
difficulty = 3
break
if rules.collidepoint ((mx, my)):
if click:
rulesGUI ()
break

94

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

if quitGame. collidepoint ((mx, my)):

if click:
pygame. quit ()
sys.exit ()
click = False
for event in pygame.event.get():
if event.type = pygame.QUIT:
pygame. quit ()
sys.exit ()
if event.type — pygame .MOUSEBUTTONDOWN:
if event.button =— 1:
click = True

pygame. display . update ()
menuClock. tick (60)

if difficulty != 0:
game(difficulty)

def rulesGUI():
screen = pygame. display .set_mode ((WIDTH, HEIGHT))
menuClock = pygame.time. Clock ()
click = False
width = screen.get_width ()
titleFont = pygame.font.SysFont(None, 48)
font = pygame. font.SysFont(None, 21)
while True:
screen. fill ((128, 128, 128))
drawText (” Rules”, titleFont, (255, 255, 255), screen, width / 2, 20)

mx, my = pygame.mouse.get_pos ()
drawMultiLineText (screen , ”””Both the player and Al start with 12
pieces on the dark squares of the three rows closest to that
player’s side. The row closest to each player is called the kings row
or crownhead. The player moves first.
Then turns alternate.
\n
Move rules
\n
There are two different ways to move in draughts:
\n
Simple move: A simple move consists of moving a piece one square diagonally to
an adjacent wunoccupied dark square.
Uncrowned pieces can move diagonally forward only; kings can move in any
diagonal direction. Jump: A jump consists of
moving a piece that is diagonally adjacent an opponent’s piece, to an empty
square immediately beyond it in the same
direction (thus ”jumping over” the opponent’s piece front and back). Pieces
can jump diagonally forward only; kings
can jump in any diagonal direction. A jumped piece ts considered ”captured” and
removed from the game. Any piece,
king or piece, can jump a king.
\n
Forced capture, is always mandatory: if a player has the option to jump, he/she
must take it, even if doing so
results in disadvantage for the jumping player. For example, a piecedated
single jump might set up the player such
that the opponent has a multi—jump in reply.
\n
Multiple jumps are possible, if after one jump, another piece is immediately
eligible to be jumped by the moved
pieceeven if that jump is in a different diagonal direction. If more than
one multi—jump is available , the player
can choose which piece to jump with, and which sequence of jumps to make. The
sequence chosen 1s not required to be
the one that maxzimizes the number of jumps in the turn; however, a player must
make all available jumps in the
sequence chosen. Kings If a piece moves into the kings row on the opponent’s
side of the board, it is crowned as a
king and gains the ability to move both forward and backward. If a piece moves
into the kings row or if it jumps into
the kings row, the current move terminates; the piece is crowned as a king but
cannot jump back out as in a

10

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

© 00O U WwN -

multi—jump until

the mext move.

pygame.draw.rect (screen ,

drawText (”back”, font,

777 (50, 50), font)
back = pygame.Rect(width / 2 — 50, 700, 200, 50)

(0, 0, 0), back)

if back.collidepoint ((mx, my)):

if click:
main ()
break

for event in pygame.event.get():
if event.type = pygame.QUIT:
pygame. quit ()

sys.exit ()
if event.type — pygame .MOUSEBUTTONDOWN:
if event.button = 1:
click = True

pygame. display .update ()
menuClock. tick (60)

def game(difficulty):
run = True
clock =

pygame. time . Clock ()
gameManager = GameManager (WIN)

while run:

cloc

k . tick (FPS)

if gameManager.turn — WHITE:

mm = minimax ()

value , newBoard = mm. AI(gameManager.getBoard (),

gameManager)

gameManager . aiMove (newBoard)

if gameManager. winner ()
print (gameManager. winner ())

for

run = False

= None:

event in pygame.event.get():
if event.type — pygame.QUIT:

run = False

if event.type = pygame .MOUSEBUTTONDOWN:

pos = pygame.mouse. get_pos ()

row, col = getRowColFromMouse (pos)
if gameManager. turn == GREEN:
gameManager. select (row, col)

gameManager . update ()
pygame. display .update ()

pygame . quit ()

main ()

3.2 piece.py

import pygame.draw

from draughts.constants import SQUARE_SIZE, GREY, CROWN

class Piece:
__init__(self, row,

def

self

self.
self .
self .

self
self
self

.TOW = row
col = col
colour = colour
king = False

.x =0

.y =0
.calcPosition ()

col ,

colour):

11

(255, 255, 255), screen, width / 2, 700)

difficulty , WHITE,

00O Ui WN

self.padding = 20
self.border = 2

def calcPosition(self):
self .x = SQUARESIZE x self.col + SQUARESIZE // 2
self.y = SQUARESSIZE x self.row + SQUARESIZE // 2

def makeKing(self):
self.king = True

def draw(self , win):
radius = SQUARESIZE // 2 — self.padding
pygame.draw. circle (win, GREY, (self.x, self.y), radius + self.border)
pygame.draw. circle (win, self.colour, (self.x, self.y), radius)
if self.king:
win. blit (CROWN, (self.x — CROWN. get_width() // 2, self.y — CROWN.
get height () // 2))

def move(self, row, col):
self .row = row
self.col = col
self.calcPosition ()

def __repr__(self):
return str(self.colour)

3.3 board.py

import pygame

from .constants import BLACK, ROWS, GREEN, SQUARE_SIZE, COLS, WHITE
from .piece import Piece

class Board:
def __init__(self):
self.board = []
self.greenLeft = self.whiteLeft = 12
self .greenKings = self.whiteKings = 0
self.createBoard ()

def drawSquares(self, win):
win. fill (BLACK)
for row in range (ROWS):
for col in range(row % 2, ROWS, 2):
pygame.draw.rect (win, GREEN, (row x SQUARESIZE, col x*
SQUARESIZE, SQUARESIZE, SQUARESIZE))

def createBoard (self):
for row in range(ROWS):
self .board.append ([])
for col in range(COLS):
if col % 2 = ((row + 1) % 2):
if row < 3:
self .board [row].append (Piece (row, col, WHITE))
elif row > 4:
self.board [row].append (Piece (row, col, GREEN))
else:
self.board [row].append (None)
else:
self . board [row|. append (None)

def draw(self , win):
self.drawSquares (win)
for row in range (ROWS):
for col in range(COLS):
piece = self.board[row]|[col]
if piece is not None:
piece .draw (win)

def move(self, piece, row, col):

self .board [piece.row][piece.col], self.board[row][col] = self.board[row
][col], self.board[piece.row][piece.col]

12

44 piece .move(row, col)

45

46 if row = ROWS — 1 or row =— 0:

47 piece . makeKing ()

48 if piece.colour = WHITE:

49 self.whiteKings += 1

50 else:

51 self.greenKings 4= 1

52

53 def remove(self , skipped):

54 for piece in skipped:

55 self .board [piece.row]|[piece.col] = None

56 if piece is not None:

57 if piece.colour = GREEN:

58 self.greenLeft —= 1

59 else:

60 self . whiteLeft —= 1

61

62 def getPiece(self, row, col):

63 return self.board[row][col]

64

65 def winner (self):

66 if self.greenlLeft <= 0:

67 return WHITE

68 elif self.whiteLeft <= 0:

69 return GREEN

70

71 return None

72

73 def getValidMoves(self , piece):

74 moves = {}

75 forcedCapture = {}

76 left = piece.col — 1

77 right = piece.col + 1

78 row = piece.row

79 if piece.colour = GREEN or piece.king:

80 moves.update(self. _traverseLeft (row — 1, max(row — 3, —1), —1,
piece.colour, left))

81 moves.update(self. _traverseRight (row — 1, max(row — 3, —1), —1,
piece.colour, right))

82 if piece.colour = WHITE or piece.king:

83 moves.update(self. _traverseLeft (row + 1, min(row + 3, ROWS), 1,
piece.colour, left))

84 moves.update(self. _traverseRight (row + 1, min(row + 3, ROWS), 1,
piece.colour, right))

85

86 if len(moves.values()) <= 1:

87 return moves

88

89 movesValues = list (moves. values())

90 movesKeys = list (moves. keys())

91

92 forced = {}

93

94 for i in range(len(movesKeys)):

95 if not movesValues|[i]:

96 forced [movesKeys[i]] = moves|[movesKeys[i]]

97 if len(forced) != len(moves):

98 forced . clear ()

99 for i in range(len(movesKeys)):

100 if movesValues|[i]:

101 forced [movesKeys[i]] = moves|[movesKeys[i]]

102 if len(forced) != len(moves):

103 for i in range(len(movesKeys)):

104 if movesValues|[i]:

105 forcedCapture [movesKeys[i]] = moves|[movesKeys[i]]

106 else:

107 forcedCapture = forced

108 else:

109 forcedCapture = forced

110 return forcedCapture

111

112 def scoreOfTheBoard(self):

13

113

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

173

174
175
176
177
178
179

return self.whiteLeft — self.greenLeft 4+ (self.whiteKings * 0.5 4+ self.
greenKings * 0.5)

def getAllPieces (self, colour):

pieces = []
for row in self.board:
for piece in row:
if piece is not None and piece.colour = colour:
pieces .append (piece)
return pieces

def _traverseLeft(self, start, stop, step, colour, left, skipped=][]):

moves = {}
last = []
for row in range(start, stop, step):
if left < O:
break
mvs = self. _traverse (row, left , skipped, moves, step, last, colour)
if mvs is None:
break
elif isinstance(mvs, list):
last = mvs
else:
moves . update (mvs)
left —= 1

return moves

def _traverseRight (self, start, stop, step, colour, right, skipped=][]):

moves = {}

last = []

for row in range(start, stop, step):
if right >= COLS:

break
mvs = self. _traverse(row, right, skipped, moves, step, last, colour
)
if mvs is None:
break
elif isinstance(mvs, list):
last = mvs
else:

moves . update (mvs)

right +=1
return moves

def _traverse(self, row, col, skipped, moves, step, last, colour):

current = self.board[row][col]
if current is None:
if skipped and not last:
return None
elif skipped:

moves [(row, col)] = last + skipped
else:
moves [(row, col)] = last
if last:
if step = —1:
rowCalc = max(row — 3, 0)
else:

rowCalc = min(row + 3, ROWS)
moves.update(self. _traverseLeft (row + step, rowCalc, step,
colour, col — 1, skipped=last))
moves.update(self. _traverseRight (row + step, rowCalc, step,
colour, col + 1, skipped=last))
return None
elif current.colour = colour:
return None
else:
last = [current |
return last

14

© 00O U W

3.4 gameManager.py

import pygame

from draughts.board import Board
from draughts.constants import GREEN, WHITE, BLUE, SQUARE_SIZE

class GameManager:

def

def

def

def

def

def

def

def

__init__(self, win):
self. _init ()
self.win = win

_init (self):
self.selected = None
self.board = Board()
self.turn = GREEN
self.validMoves = {}
self.legCount = 0

update (self):
self.board.draw(self.win)

self .drawValidMoves(self.validMoves)
pygame. display . update ()

reset (self):
self. _init ()

select (self , row, col):
if self.selected:
result = self._move(row, col)
if not result:
self .selected = None
self.select (row, col)
piece = self.board.getPiece(row, col)
if piece is not None and piece.colour — self.turn:
self.selected = piece
self.validMoves = self.board.getValidMoves(piece)
return True

_move(self , row, col):
piece = self.board.getPiece(row, col)
if self.selected and piece is None and (row, col) in self.validMoves:
self.board .move(self.selected , row, col)
skipped = self.validMoves [row, col]
if self.validMoves[list (self.validMoves.keys())[0]]:
if self.validMoves|[list (self.validMoves.keys())[0]][0]. king:
self.selected . makeKing()
if skipped:
self .board.remove (skipped)
if len(self.validMoves) > 1:
del self.validMoves|[list (self.validMoves.keys())[0]]
else:
self.changeTurn ()
else:
self .changeTurn ()
else:
return False
return True

changeTurn (self):
self.validMoves = {}
if self.turn =— GREEN:
self.turn = WHITE
else:
self.turn = GREEN

drawValidMoves(self , moves):
for row, col in moves:
pygame.draw. circle (self.win, BLUE,
(col * SQUARESIZE + SQUARESIZE // 2, row =
SQUARESIZE + SQUARESIZE // 2), 15)

15

00O Ui W+

0O Uk WN

def winner (self):
return self.board.winner ()

def getBoard(self):
return self.board

def aiMove(self, board):
self.board = board
self.changeTurn ()

3.5 minimaxAlgorithm.py

from copy import deepcopy
from math import inf

from draughts.constants import GREEN, WHITE

class minimax () :

def AI(self, board, depth, maxPlayer, gameManager):
if depth = 0 or board.winner() is not None:
return board.scoreOfTheBoard (), board

if maxPlayer:
maxEval = —inf
bestMove = None
for move in self._getAllMoves(board, WHITE) :

evaluation = self.AI(move, depth — 1, False, gameManager) [0]

maxEval = max(maxEval, evaluation)
if maxEval =— evaluation:
bestMove = move
return maxEval, bestMove
else:
minEval = inf

bestMove = None
for move in self._getAllMoves(board, GREEN):

evaluation = self.AlI(move, depth — 1, True, gameManager) [0]

minEval = min(minEval, evaluation)
if minEval = evaluation:
bestMove = move

return minEval, bestMove

def _simulateMove(self, piece, move, board, skip):
board .move(piece, move[0], move[l])
if skip:
board .remove (skip)

return board

def _getAllMoves(self , board, colour):
moves = []

for piece in board.getAllPieces(colour):
validMoves = board.getValidMoves(piece)
for move, skip in validMoves.items():
tempBoard = deepcopy (board)
tempPiece = tempBoard.getPiece(piece.row, piece.col)
newBoard = self._simulateMove (tempPiece, move, tempBoard,
moves . append (newBoard)
return moves

3.6 constants.py
import pygame

WIDTH, HEIGHT = 800, 800
ROWS, COLS = 8, 8
SQUARE_SIZE = WIDTH // COLS

RGB color

16

skip)

10

12
13
14
15

CGREEN = (144, 184,
WHITE = (255, 255, 255)
BLACK = (0, 0, 0)

BLUE = (0, 0, 255)
GREY = (128, 128,

CROWN = pygame. transform . scale (pygame.image.load (”./draughts/assets/crown.png”)

)

(45, 25))

59)

128)

17

	Introduction
	Description of program functionality
	Gameplay
	Interactive checkers gameplay (Human vs. Computer) of some sort
	Different levels of verifiably effective AI cleverness, adjustable by the user

	Search algorithm
	Appropriate and efficient state representation
	Reasonable successor function to generate AI moves
	Minimax evaluation
	Appropriate use of heuristics

	Validation of moves
	No invalid moves carried out by the AI
	Automatic check for valid user moves
	Rejection of invalid user moves
	Forced Capture

	Other Features
	Multi-leg capturing moves for the user
	Multi-leg capturing moves for the AI
	King conversion at baseline (The king's row) as per the normal rules
	Regicide - if a normal piece manages to capture a king, it is instantly crowned king and then the current turn ends.
	Some kind of help feature that can be enabled at the user’s request to get hints about available moves, given the current game state.

	Some kind of board representation displayed on screen
	Theinterface properly updates the display after completed moves (User and AI moves)
	Mouse interaction focus, e.g., click to select & click to place, or drag & drop (better)
	GUI pauses appropriately to show the intermediate steps of any multi-leg moves
	Dedicated display of the rules (e.g., a corresponding button opening a pop-up window)

	Appendix
	main.py

