Merge pull request 'reinforcement-learning' (#1) from reinforcement-learning into master
Reviewed-on: #1
This commit is contained in:
commit
7e9b0a475e
@ -4,7 +4,7 @@
|
||||
<content url="file://$MODULE_DIR$">
|
||||
<excludeFolder url="file://$MODULE_DIR$/venv" />
|
||||
</content>
|
||||
<orderEntry type="jdk" jdkName="Python 3.11 (draughts)" jdkType="Python SDK" />
|
||||
<orderEntry type="jdk" jdkName="$USER_HOME$/anaconda3" jdkType="Python SDK" />
|
||||
<orderEntry type="sourceFolder" forTests="false" />
|
||||
</component>
|
||||
</module>
|
@ -1,4 +1,4 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.11 (draughts)" project-jdk-type="Python SDK" />
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="$USER_HOME$/anaconda3" project-jdk-type="Python SDK" />
|
||||
</project>
|
6
.idea/other.xml
Normal file
6
.idea/other.xml
Normal file
@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="PySciProjectComponent">
|
||||
<option name="PY_SCI_VIEW_SUGGESTED" value="true" />
|
||||
</component>
|
||||
</project>
|
BIN
Report.pdf
BIN
Report.pdf
Binary file not shown.
100
changeInRewards-3.txt
Normal file
100
changeInRewards-3.txt
Normal file
@ -0,0 +1,100 @@
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
100
changeInRewards-5.txt
Normal file
100
changeInRewards-5.txt
Normal file
@ -0,0 +1,100 @@
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
187
main.py
187
main.py
@ -1,7 +1,10 @@
|
||||
import sys
|
||||
|
||||
import pygame
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
from reinforcementLearning.ReinforcementLearning import ReinforcementLearning
|
||||
from utilities.constants import WIDTH, HEIGHT, SQUARE_SIZE, WHITE, GREEN
|
||||
from utilities.gameManager import GameManager
|
||||
from minimax.minimaxAlgo import MiniMax
|
||||
@ -11,21 +14,45 @@ WIN = pygame.display.set_mode((WIDTH, HEIGHT))
|
||||
pygame.display.set_caption("Draughts")
|
||||
|
||||
|
||||
def getRowColFromMouse(pos):
|
||||
def getRowColFromMouse(pos: dict) -> tuple:
|
||||
"""
|
||||
Gets the row and column from the mouse position
|
||||
:param pos: X and Y position of the mouse
|
||||
:return: Row and column
|
||||
"""
|
||||
x, y = pos
|
||||
row = y // SQUARE_SIZE
|
||||
col = x // SQUARE_SIZE
|
||||
return row, col
|
||||
|
||||
|
||||
def drawText(text, font, color, surface, x, y):
|
||||
textobj = font.render(text, 1, color)
|
||||
def drawText(text: str, font: pygame.font.SysFont, colour: tuple, surface: pygame.display, x: float, y: int) -> None:
|
||||
"""
|
||||
Draws text on the screen
|
||||
:param text: Text to draw
|
||||
:param font: System font
|
||||
:param colour: Colour of the text
|
||||
:param surface: The display surface
|
||||
:param x: X position of the text
|
||||
:param y: Y position of the text
|
||||
:return None
|
||||
"""
|
||||
textobj = font.render(text, 1, colour)
|
||||
textrect = textobj.get_rect()
|
||||
textrect.topleft = (x, y)
|
||||
surface.blit(textobj, textrect)
|
||||
|
||||
|
||||
def drawMultiLineText(surface, text, pos, font, color=pygame.Color('black')):
|
||||
def drawMultiLineText(surface: pygame.display, text: str, pos: dict, font: pygame.font.SysFont, colour: tuple = pygame.Color('black')) -> None:
|
||||
"""
|
||||
Draws multiline text on the screen
|
||||
:param surface: the display surface
|
||||
:param text: text to draw
|
||||
:param pos: X and Y position of the text
|
||||
:param font: System font
|
||||
:param colour: colour of the text
|
||||
:return None
|
||||
"""
|
||||
words = [word.split(' ') for word in text.splitlines()] # 2D array where each row is a list of words.
|
||||
space = font.size(' ')[0] # The width of a space.
|
||||
max_width, max_height = surface.get_size()
|
||||
@ -33,7 +60,7 @@ def drawMultiLineText(surface, text, pos, font, color=pygame.Color('black')):
|
||||
word_height = None
|
||||
for line in words:
|
||||
for word in line:
|
||||
word_surface = font.render(word, 0, color)
|
||||
word_surface = font.render(word, 0, colour)
|
||||
word_width, word_height = word_surface.get_size()
|
||||
if x + word_width >= max_width:
|
||||
x = pos[0] # Reset the x.
|
||||
@ -44,15 +71,20 @@ def drawMultiLineText(surface, text, pos, font, color=pygame.Color('black')):
|
||||
y += word_height # Start on new row.
|
||||
|
||||
|
||||
def main():
|
||||
def main(difficulty: int = 0) -> None:
|
||||
"""
|
||||
Main function, that shows the menu before running the game
|
||||
:param difficulty: difficulty of minimax
|
||||
:return: None
|
||||
"""
|
||||
pygame.init()
|
||||
screen = pygame.display.set_mode((WIDTH, HEIGHT))
|
||||
menuClock = pygame.time.Clock()
|
||||
click = False
|
||||
width = screen.get_width()
|
||||
font = pygame.font.SysFont(None, 25)
|
||||
difficulty = 0
|
||||
font = pygame.font.SysFont("", 25)
|
||||
|
||||
if difficulty == 0:
|
||||
while True:
|
||||
# menu
|
||||
screen.fill((128, 128, 128))
|
||||
@ -107,17 +139,21 @@ def main():
|
||||
|
||||
pygame.display.update()
|
||||
menuClock.tick(60)
|
||||
if difficulty != 0:
|
||||
|
||||
game(difficulty)
|
||||
|
||||
|
||||
def rulesGUI():
|
||||
def rulesGUI() -> None:
|
||||
"""
|
||||
Shows the rules of the game
|
||||
:return: None
|
||||
"""
|
||||
screen = pygame.display.set_mode((WIDTH, HEIGHT))
|
||||
menuClock = pygame.time.Clock()
|
||||
click = False
|
||||
width = screen.get_width()
|
||||
titleFont = pygame.font.SysFont(None, 48)
|
||||
font = pygame.font.SysFont(None, 21)
|
||||
titleFont = pygame.font.SysFont("", 48)
|
||||
font = pygame.font.SysFont("", 21)
|
||||
while True:
|
||||
screen.fill((128, 128, 128))
|
||||
drawText("Rules", titleFont, (255, 255, 255), screen, width / 2, 20)
|
||||
@ -171,43 +207,116 @@ multi-jump until the next move.""", (50, 50), font)
|
||||
menuClock.tick(60)
|
||||
|
||||
|
||||
def game(difficulty):
|
||||
def game(difficulty: int) -> None:
|
||||
"""
|
||||
Runs the game with the given difficulty. Used for training and testing the RL algorithm
|
||||
:param difficulty: The difficulty of the minimax algorithm
|
||||
"""
|
||||
run = True
|
||||
clock = pygame.time.Clock()
|
||||
gameManager = GameManager(WIN, GREEN)
|
||||
|
||||
while run:
|
||||
rl = ReinforcementLearning(gameManager.board.getAllMoves(WHITE), gameManager.board, WHITE, gameManager)
|
||||
# model = rl.buildMainModel()
|
||||
rl.model.load_weights("./modelWeights/model_final.h5")
|
||||
mm = MiniMax()
|
||||
totalReward = []
|
||||
winners = []
|
||||
for i in range(50):
|
||||
score = 0
|
||||
for j in range(200):
|
||||
print(j)
|
||||
clock.tick(FPS)
|
||||
|
||||
reward = 0
|
||||
if gameManager.turn == WHITE:
|
||||
mm = MiniMax()
|
||||
value, newBoard = mm.AI(gameManager.getBoard(), difficulty, WHITE, gameManager)
|
||||
# mm = MiniMax()
|
||||
# value, newBoard = mm.AI(difficulty, WHITE, gameManager)
|
||||
# gameManager.aiMove(newBoard)
|
||||
# reward, newBoard = rl.AITrain(gameManager.board)
|
||||
newBoard = rl.AITest(gameManager.board)
|
||||
|
||||
if newBoard is None:
|
||||
print("Cannot make move")
|
||||
continue
|
||||
gameManager.aiMove(newBoard)
|
||||
# time.sleep(0.15)
|
||||
|
||||
if gameManager.turn == GREEN:
|
||||
mm = MiniMax()
|
||||
value, newBoard = mm.AI(gameManager.getBoard(), difficulty, GREEN, gameManager)
|
||||
gameManager.aiMove(newBoard)
|
||||
# time.sleep(0.15)
|
||||
|
||||
if gameManager.winner() != None:
|
||||
print(gameManager.winner())
|
||||
run = False
|
||||
|
||||
for event in pygame.event.get():
|
||||
if event.type == pygame.QUIT:
|
||||
run = False
|
||||
if event.type == pygame.MOUSEBUTTONDOWN:
|
||||
pos = pygame.mouse.get_pos()
|
||||
row, col = getRowColFromMouse(pos)
|
||||
# if gameManager.turn == GREEN:
|
||||
gameManager.select(row, col)
|
||||
|
||||
gameManager.update()
|
||||
pygame.display.update()
|
||||
|
||||
if gameManager.turn == GREEN:
|
||||
value, newBoard = mm.AI(difficulty, GREEN, gameManager)
|
||||
gameManager.aiMove(newBoard)
|
||||
|
||||
score += reward
|
||||
|
||||
if gameManager.winner() is not None:
|
||||
print("Green" if gameManager.winner() == GREEN else "White", " wins")
|
||||
# with open(f"winners-{difficulty}.txt", "a+") as f:
|
||||
# f.write(str(gameManager.winner()) + "\n")
|
||||
winners.append(gameManager.winner())
|
||||
break
|
||||
|
||||
# for event in pygame.event.get():
|
||||
# if event.type == pygame.QUIT:
|
||||
# break
|
||||
# if event.type == pygame.MOUSEBUTTONDOWN:
|
||||
# pos = pygame.mouse.get_pos()
|
||||
# row, col = getRowColFromMouse(pos)
|
||||
# # if gameManager.turn == GREEN:
|
||||
# gameManager.select(row, col)
|
||||
|
||||
gameManager.update()
|
||||
pygame.display.update()
|
||||
|
||||
if gameManager.winner() is None:
|
||||
# with open(f"winners-{difficulty}.txt", "a+") as f:
|
||||
# f.write(str(0) + "\n")
|
||||
winners.append(0)
|
||||
gameManager.reset()
|
||||
rl.resetScore()
|
||||
print("Game: ", i, " Reward: ", score)
|
||||
# with open(f"rewards-{difficulty}.txt", "a+") as f:
|
||||
# f.write(str(score) + "\n")
|
||||
|
||||
totalReward.append(score)
|
||||
# save model weights every 25 games
|
||||
# if i % 250 == 0 and i != 0:
|
||||
# rl.model.save("./modelWeights/model_" + str(i) + ".h5")
|
||||
# pygame.quit()
|
||||
|
||||
# rl.model.save("./modelWeights/model_final.h5")
|
||||
change_in_rewards = [0] # Initialize with 0 for the first episode
|
||||
for i in range(1, len(totalReward)):
|
||||
change_in_reward = totalReward[i] - totalReward[i - 1]
|
||||
change_in_rewards.append(change_in_reward)
|
||||
|
||||
main()
|
||||
# with open(f"changeInRewards-{difficulty}.txt", "a+") as f:
|
||||
# for i in change_in_rewards:
|
||||
# f.write(str(i) + "\n")
|
||||
|
||||
# episodes = list(range(1, len(totalReward) + 1))
|
||||
#
|
||||
# plt.plot(episodes, change_in_rewards)
|
||||
# plt.xlabel('Training Games')
|
||||
# plt.ylabel('Change in Game Reward')
|
||||
# plt.title('Change in Game Reward vs. Training Games')
|
||||
# plt.grid(True)
|
||||
# plt.show()
|
||||
#
|
||||
# plt.plot([i for i in range(len(totalReward))], totalReward)
|
||||
# plt.xlabel("Games")
|
||||
# plt.ylabel("Reward")
|
||||
# plt.show()
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
bar = ax.bar(["Draw", "White", "Green"], [winners.count(0), winners.count(WHITE), winners.count(GREEN)])
|
||||
ax.set(xlabel='Winner', ylabel='Frequency', ylim=[0, 500])
|
||||
ax.set_title(f"Winners for difficulty — {difficulty}")
|
||||
ax.bar_label(bar)
|
||||
plt.show()
|
||||
|
||||
|
||||
# difficulties = [3, 5, 7, 9]
|
||||
#
|
||||
# for diff in difficulties:
|
||||
# main(diff)
|
||||
main(3)
|
||||
|
@ -1,56 +1,46 @@
|
||||
import random
|
||||
from copy import deepcopy
|
||||
from math import inf
|
||||
|
||||
from utilities.constants import GREEN, WHITE
|
||||
from utilities.gameManager import GameManager
|
||||
|
||||
|
||||
class MiniMax():
|
||||
class MiniMax:
|
||||
|
||||
def AI(self, board, depth, maxPlayer, gameManager):
|
||||
if depth == 0 or board.winner() is not None:
|
||||
return board.scoreOfTheBoard(), board
|
||||
def AI(self, depth: int, maxPlayer: int, gameManager: GameManager) -> tuple:
|
||||
"""
|
||||
The minimax algorithm
|
||||
:param depth: How deep the algorithm should go
|
||||
:param maxPlayer: The current player
|
||||
:param gameManager: The game manager
|
||||
:return: the best evaluation and board
|
||||
"""
|
||||
if depth == 0 or gameManager.board.winner() is not None:
|
||||
return gameManager.board.scoreOfTheBoard(), gameManager.board
|
||||
|
||||
if maxPlayer:
|
||||
if type(maxPlayer) == int:
|
||||
maxEval = -inf
|
||||
bestMove = None
|
||||
for move in self.getAllMoves(board, maxPlayer):
|
||||
evaluation = self.AI(move, depth - 1, False, gameManager)[0]
|
||||
for move in gameManager.board.getAllMoves(maxPlayer):
|
||||
evaluation = self.AI(depth - 1, False, gameManager)[0]
|
||||
maxEval = max(maxEval, evaluation)
|
||||
if maxEval > evaluation:
|
||||
bestMove = move
|
||||
if maxEval == evaluation:
|
||||
# bestMove = move
|
||||
bestMove = bestMove if random.choice([True, False]) else move
|
||||
return maxEval, bestMove
|
||||
else:
|
||||
minEval = inf
|
||||
bestMove = None
|
||||
colour = WHITE if gameManager.turn == GREEN else GREEN
|
||||
for move in self.getAllMoves(board, colour):
|
||||
evaluation = self.AI(move, depth - 1, True, gameManager)[0]
|
||||
for move in gameManager.board.getAllMoves(colour):
|
||||
evaluation = self.AI(depth - 1, True, gameManager)[0]
|
||||
minEval = min(minEval, evaluation)
|
||||
if minEval < evaluation:
|
||||
bestMove = move
|
||||
if minEval == evaluation:
|
||||
# bestMove = move
|
||||
bestMove = bestMove if random.choice([True, False]) else move
|
||||
|
||||
return minEval, bestMove
|
||||
|
||||
def _simulateMove(self, piece, move, board, skip):
|
||||
board.move(piece, move[0], move[1])
|
||||
if skip:
|
||||
board.remove(skip)
|
||||
|
||||
return board
|
||||
|
||||
def getAllMoves(self, board, colour):
|
||||
moves = []
|
||||
|
||||
for piece in board.getAllPieces(colour):
|
||||
validMoves = board.getValidMoves(piece)
|
||||
for move, skip in validMoves.items():
|
||||
tempBoard = deepcopy(board)
|
||||
tempPiece = tempBoard.getPiece(piece.row, piece.col)
|
||||
newBoard = self._simulateMove(tempPiece, move, tempBoard, skip)
|
||||
moves.append(newBoard)
|
||||
return moves
|
||||
|
BIN
modelWeights/model_250.h5
Normal file
BIN
modelWeights/model_250.h5
Normal file
Binary file not shown.
BIN
modelWeights/model_final.h5
Normal file
BIN
modelWeights/model_final.h5
Normal file
Binary file not shown.
@ -1,96 +1,280 @@
|
||||
import random
|
||||
from collections import deque
|
||||
from typing import Any
|
||||
from copy import deepcopy
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from tensorflow.python.keras import Sequential, regularizers
|
||||
from tensorflow.python.keras.layers import Dense
|
||||
from keras.engine.input_layer import InputLayer
|
||||
from keras.layers import BatchNormalization
|
||||
from tensorflow.python.keras import Sequential, regularizers, Input
|
||||
from tensorflow.python.keras.layers import Dense, Lambda, Dropout
|
||||
from tensorflow.python.keras.optimizer_v2.adam import Adam
|
||||
|
||||
from minimax.minimaxAlgo import MiniMax
|
||||
from utilities import Board
|
||||
from utilities.constants import WHITE, GREEN
|
||||
from utilities.gameManager import GameManager
|
||||
|
||||
|
||||
class ReinforcementLearning():
|
||||
|
||||
def __init__(self, action_space, state_space, env):
|
||||
self.action_space = action_space
|
||||
self.state_space = state_space
|
||||
self.env = env
|
||||
def __init__(self, actionSpace: list, board: Board, colour: int, gameManager: GameManager) -> None:
|
||||
"""
|
||||
Constructor for the ReinforcementLearning class
|
||||
:param actionSpace: The number of possible actions
|
||||
:param board: The game board
|
||||
"""
|
||||
self.gameManager = gameManager
|
||||
self.actionSpace = actionSpace
|
||||
self.board = board
|
||||
self.state = self.board.board
|
||||
self.colour = colour
|
||||
self.score = 0
|
||||
self.epsilon = 1
|
||||
self.gamma = .95
|
||||
self.batch_size = 64
|
||||
self.epsilon_min = .01
|
||||
self.epsilon_decay = .995
|
||||
self.learning_rate = 0.001
|
||||
self.memory = deque(maxlen=100000)
|
||||
self.model = self._buildModel()
|
||||
self.batchSize = 512
|
||||
self.maxSize = 32
|
||||
self.epsilonMin = .01
|
||||
self.epsilonDecay = .995
|
||||
self.learningRate = 0.0001
|
||||
self.memory = deque(maxlen=10000000)
|
||||
self.model = self.buildMainModel()
|
||||
print(self.model.summary())
|
||||
|
||||
def AI(self, episode):
|
||||
loss = []
|
||||
def AITrain(self, board: Board) -> tuple:
|
||||
"""
|
||||
Learns to play the draughts game
|
||||
:return: The loss
|
||||
"""
|
||||
self.board = board
|
||||
self.state = self._convertState(self.board.board)
|
||||
self.actionSpace = self.encodeMoves(self.colour, self.board)
|
||||
if len(self.actionSpace) == 0:
|
||||
return self.score, None
|
||||
|
||||
max_steps = 1000
|
||||
action = self._act()
|
||||
reward, nextState, done = self.board.step(action, self.colour)
|
||||
self.score += reward
|
||||
self.state = self._convertState(nextState.board)
|
||||
self._remember(deepcopy(self.board), action, reward, self.state, done)
|
||||
self._replay()
|
||||
|
||||
for e in range(episode):
|
||||
state = self.env.reset()
|
||||
state = np.reshape(state, (1, self.state_space))
|
||||
score = 0
|
||||
for i in range(max_steps):
|
||||
action = self.act(state)
|
||||
reward, next_state, done = self.env.step(action)
|
||||
score += reward
|
||||
next_state = np.reshape(next_state, (1, self.state_space))
|
||||
self.remember(state, action, reward, next_state, done)
|
||||
state = next_state
|
||||
self.replay()
|
||||
if done:
|
||||
print("episode: {}/{}, score: {}".format(e, episode, score))
|
||||
break
|
||||
loss.append(score)
|
||||
return self.score, nextState
|
||||
|
||||
def _buildModel(self):
|
||||
def AITest(self, board: Board) -> Board:
|
||||
"""
|
||||
Runs the AI
|
||||
:param board: The board
|
||||
:return: The new board
|
||||
"""
|
||||
actionSpace = self.encodeMoves(WHITE, board)
|
||||
if len(actionSpace) == 0:
|
||||
print("Cannot make move")
|
||||
return None
|
||||
totalMoves = len(actionSpace)
|
||||
# moves = np.squeeze(moves)
|
||||
moves = np.pad(actionSpace, (0, self.maxSize - totalMoves), 'constant', constant_values=(1, 1))
|
||||
act_values = self.model.predict(self.normalise(moves))
|
||||
val = np.argmax(act_values[0])
|
||||
val = val if val < totalMoves else totalMoves - 1
|
||||
reward, newBoard, done = board.step(actionSpace[val], WHITE)
|
||||
return newBoard
|
||||
|
||||
def buildMainModel(self) -> Sequential:
|
||||
"""
|
||||
Build the model for the AI
|
||||
:return: The model
|
||||
"""
|
||||
# Board model
|
||||
board_model = Sequential()
|
||||
modelLayers = [
|
||||
Lambda(lambda x: tf.reshape(x, [-1, 32])),
|
||||
Dense(512, activation='relu', kernel_regularizer=regularizers.l2(0.01)),
|
||||
Dropout(0.2),
|
||||
Dense(256, activation='relu', kernel_regularizer=regularizers.l2(0.01)),
|
||||
Dropout(0.2),
|
||||
Dense(128, activation='relu', kernel_regularizer=regularizers.l2(0.01)),
|
||||
Dropout(0.2),
|
||||
Dense(64, activation='relu', kernel_regularizer=regularizers.l2(0.01)),
|
||||
Dropout(0.2),
|
||||
Dense(32, activation='relu', kernel_regularizer=regularizers.l2(0.01)),
|
||||
Dropout(0.2),
|
||||
Dense(16, activation='linear', kernel_regularizer=regularizers.l2(0.01))
|
||||
]
|
||||
boardModel = Sequential(modelLayers)
|
||||
|
||||
# input dimensions is 32 board position values
|
||||
board_model.add(Dense(64, activation='relu', input_dim=32))
|
||||
# boardModel.add(BatchNormalization())
|
||||
boardModel.compile(optimizer=Adam(learning_rate=self.learningRate), loss='mean_squared_error')
|
||||
boardModel.build(input_shape=(None, None))
|
||||
|
||||
# use regularizers, to prevent fitting noisy labels
|
||||
board_model.add(Dense(32, activation='relu', kernel_regularizer=regularizers.l2(0.01)))
|
||||
board_model.add(Dense(16, activation='relu', kernel_regularizer=regularizers.l2(0.01))) # 16
|
||||
board_model.add(Dense(8, activation='relu', kernel_regularizer=regularizers.l2(0.01))) # 8
|
||||
return boardModel
|
||||
|
||||
# output isn't squashed, because it might lose information
|
||||
board_model.add(Dense(1, activation='linear', kernel_regularizer=regularizers.l2(0.01)))
|
||||
board_model.compile(optimizer='nadam', loss='binary_crossentropy')
|
||||
|
||||
return board_model
|
||||
|
||||
def remember(self, state, action, reward, next_state, done):
|
||||
self.memory.append((state, action, reward, next_state, done))
|
||||
|
||||
def replay(self):
|
||||
if len(self.memory) < self.batch_size:
|
||||
def _replay(self) -> None:
|
||||
"""
|
||||
trains the model
|
||||
:return: None
|
||||
"""
|
||||
if len(self.memory) < self.batchSize:
|
||||
# Not enough data to replay and test the model
|
||||
return
|
||||
|
||||
minibatch = random.sample(self.memory, self.batch_size)
|
||||
states = np.array([i[0] for i in minibatch])
|
||||
actions = np.array([i[1] for i in minibatch])
|
||||
rewards = np.array([i[2] for i in minibatch])
|
||||
next_states = np.array([i[3] for i in minibatch])
|
||||
dones = np.array([i[4] for i in minibatch])
|
||||
# Get a random sample from the memory
|
||||
minibatch = random.sample(self.memory, int(self.maxSize))
|
||||
|
||||
states = np.squeeze(states)
|
||||
next_states = np.squeeze(next_states)
|
||||
# Extract states, rewards, dones
|
||||
states = [m[0] for m in minibatch]
|
||||
rewards = [m[2] for m in minibatch]
|
||||
dones = [m[4] for m in minibatch]
|
||||
|
||||
targets = rewards + self.gamma * (np.amax(self.model.predict_on_batch(next_states), axis=1)) * (1 - dones)
|
||||
targets_full = self.model.predict_on_batch(states)
|
||||
# Encoded moves
|
||||
encodedMoves = []
|
||||
for state in states:
|
||||
encodedMoves.append(self.encodeMoves(self.colour, state))
|
||||
|
||||
ind = np.array([i for i in range(self.batch_size)])
|
||||
targets_full[[ind], [actions]] = targets
|
||||
# Calculate targets
|
||||
targets = []
|
||||
for i, moves in enumerate(encodedMoves):
|
||||
if dones[i]:
|
||||
target = rewards[i]
|
||||
else:
|
||||
target = rewards[i] + self.gamma * self._maxNextQ()
|
||||
|
||||
self.model.fit(states, targets_full, epochs=1, verbose=0)
|
||||
if self.epsilon > self.epsilon_min:
|
||||
self.epsilon *= self.epsilon_decay
|
||||
targets.append(target)
|
||||
|
||||
def act(self, state):
|
||||
encodedMoves = np.array([np.pad(m, (0, self.maxSize - len(m)), 'constant', constant_values=(1, 1))
|
||||
for m in encodedMoves])
|
||||
targets = np.array(targets)
|
||||
self.model.fit(self.normalise(encodedMoves), self.normalise(targets), epochs=20)
|
||||
if self.epsilon > self.epsilonMin:
|
||||
self.epsilon *= self.epsilonDecay
|
||||
|
||||
def _remember(self, state: np.array, action: int, reward: float, nextState: np.array, done: bool) -> None:
|
||||
"""
|
||||
Remembers what it has learnt
|
||||
:param state: The current state
|
||||
:param action: The action taken
|
||||
:param reward: The reward for the action
|
||||
:param nextState: The next state
|
||||
:param done: Whether the game is finished
|
||||
:return: None
|
||||
"""
|
||||
self.memory.append((state, action, reward, nextState, done))
|
||||
|
||||
def _act(self) -> Any:
|
||||
"""
|
||||
Chooses an action based on the available moves
|
||||
:return: The action
|
||||
"""
|
||||
if np.random.rand() <= self.epsilon:
|
||||
return random.randrange(self.action_space)
|
||||
act_values = self.model.predict(state)
|
||||
return np.argmax(act_values[0])
|
||||
# choose a random action from the action spaces list
|
||||
mm = MiniMax()
|
||||
value, newBoard = mm.AI(3, self.colour, self.gameManager)
|
||||
if newBoard is None:
|
||||
return random.choice(self.actionSpace)
|
||||
where = self._boardDiff(self.board, newBoard)
|
||||
return self._encode(where[0]+1, where[1]+1)
|
||||
|
||||
if len(self.actionSpace) == 1:
|
||||
return self.actionSpace[0]
|
||||
encodedMoves = np.squeeze(self.actionSpace)
|
||||
encodedMoves = np.pad(encodedMoves, (0, self.maxSize - len(encodedMoves)), 'constant', constant_values=(1, 1))
|
||||
actValues = self.model.predict(self.normalise(encodedMoves))
|
||||
val = np.argmax(actValues[0])
|
||||
val = val if val < len(self.actionSpace) else len(self.actionSpace) - 1
|
||||
return self.actionSpace[val]
|
||||
|
||||
def resetScore(self) -> None:
|
||||
"""
|
||||
Resets the score
|
||||
:return: None
|
||||
"""
|
||||
self.score = 0
|
||||
|
||||
def _convertState(self, board: list) -> list:
|
||||
"""
|
||||
Converts the board into a 2D list of numbers
|
||||
:param board: 2D list of pieces
|
||||
:return: new 2D list of numbers
|
||||
"""
|
||||
num_board = []
|
||||
|
||||
for row in board:
|
||||
num_row = []
|
||||
for piece in row:
|
||||
if piece == 0:
|
||||
num_row.append(0)
|
||||
continue
|
||||
|
||||
if piece.colour == 1:
|
||||
num_row.append(1)
|
||||
continue
|
||||
|
||||
num_row.append(2)
|
||||
|
||||
num_board.append(num_row)
|
||||
|
||||
return num_board
|
||||
|
||||
def _encode(self, start: tuple, end: tuple) -> int:
|
||||
"""
|
||||
Encodes the move into an integer
|
||||
:param start: Tuple of start position
|
||||
:param end: Tuple of end position
|
||||
:return: Encoded move
|
||||
"""
|
||||
start_row = start[0]
|
||||
start_col = end[0]
|
||||
|
||||
end_row = start[-1]
|
||||
end_col = end[-1]
|
||||
|
||||
# Concatenate into integer
|
||||
return int(str(start_row) + str(start_col) + str(end_row) + str(end_col))
|
||||
|
||||
def _maxNextQ(self) -> float:
|
||||
"""
|
||||
Calculates the max Q value for the next state
|
||||
:return: the max Q value
|
||||
"""
|
||||
colour = WHITE if self.colour == GREEN else GREEN
|
||||
encodedMoves = self.encodeMoves(colour, self.board)
|
||||
if len(encodedMoves) == 0:
|
||||
return -1
|
||||
paddedMoves = np.array(np.pad(encodedMoves, (0, self.maxSize - len(encodedMoves)), 'constant', constant_values=(1, 1)))
|
||||
nextQValues = self.model.predict_on_batch(self.normalise(paddedMoves))
|
||||
return np.max(nextQValues)
|
||||
|
||||
def encodeMoves(self, colour: int, board: Board) -> list:
|
||||
"""
|
||||
Encodes the moves into a list encoded moves
|
||||
:param colour: Colour of the player
|
||||
:param board: The board
|
||||
:return: list Of encoded moves
|
||||
"""
|
||||
encodedMoves = []
|
||||
moves = board.getAllMoves(colour)
|
||||
for move in moves:
|
||||
where = self._boardDiff(board, move)
|
||||
encodedMoves.append(self._encode(where[0]+1, where[1]+1))
|
||||
return encodedMoves
|
||||
|
||||
def _boardDiff(self, board: Board, move: Board) -> np.array:
|
||||
"""
|
||||
Finds the difference between the two boards
|
||||
:param board: The current board
|
||||
:param move: The new board
|
||||
:return: the difference between the two boards
|
||||
"""
|
||||
cnvState = np.array(self._convertState(board.board))
|
||||
cnvMove = np.array(self._convertState(move.board))
|
||||
diff = np.subtract(cnvMove, cnvState)
|
||||
diff = np.nonzero(diff)
|
||||
return diff
|
||||
|
||||
def normalise(self, data: np.array) -> np.array:
|
||||
"""
|
||||
Normalise the data
|
||||
:param data: the data to normalise
|
||||
:return: normalised data
|
||||
"""
|
||||
return data / 10000
|
80
results.py
Normal file
80
results.py
Normal file
@ -0,0 +1,80 @@
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from utilities.constants import GREEN, WHITE
|
||||
|
||||
# winners = []
|
||||
with open("winners-5.txt", "r") as f:
|
||||
winners = f.readlines()
|
||||
|
||||
winners = [int(x.strip()) for x in winners]
|
||||
|
||||
# lavg = []
|
||||
# for i in range(0, len(winners), 25):
|
||||
# lavg.append(winners[i:i+25].count(2) / 25)
|
||||
#
|
||||
# x = np.arange(0, len(lavg))
|
||||
# y = np.array(lavg) * 100
|
||||
#
|
||||
# a, b = np.polyfit(x, y, 1)
|
||||
#
|
||||
# fig, ax = plt.subplots(figsize=(10, 5))
|
||||
# ax.plot(y)
|
||||
# ax.set_xticks(np.arange(0, len(lavg), 2))
|
||||
# ax.minorticks_on()
|
||||
# ax.plot(x, a*x+b, color='red', linestyle='--', linewidth=2)
|
||||
# ax.set_ylim([0, 100])
|
||||
# ax.set_title("Winners Average")
|
||||
# ax.grid(which='major', linestyle='-', linewidth='0.5', color='black')
|
||||
# ax.grid(which='minor', linestyle=':', linewidth='0.5')
|
||||
# ax.set_xlabel("Average Set")
|
||||
# ax.set_ylabel("Percentage of Wins")
|
||||
# ax.tick_params(which="minor", bottom=False, left=False)
|
||||
# plt.show()
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
bar = ax.bar(["Draw", "White", "Green"], [winners.count(0), winners.count(WHITE), winners.count(GREEN)])
|
||||
ax.set(xlabel='Winner', ylabel='Frequency', ylim=[0, 100])
|
||||
ax.set_title("Winners at Depth 5")
|
||||
ax.grid(which='major', linestyle='-', linewidth='0.5', color='grey', axis='y')
|
||||
ax.bar_label(bar)
|
||||
plt.show()
|
||||
|
||||
# with open("trainedRewards.txt", "r") as f:
|
||||
# totalReward = f.readlines()
|
||||
#
|
||||
# totalReward = [float(x.strip()) for x in totalReward]
|
||||
# filteredReward = list(filter(lambda x: x > -1500, totalReward))
|
||||
|
||||
# change_in_rewards = [0] # Initialize with 0 for the first episode
|
||||
# for i in range(1, len(totalReward)):
|
||||
# change_in_reward = totalReward[i] - totalReward[i - 1]
|
||||
# change_in_rewards.append(change_in_reward)
|
||||
#
|
||||
# games = list(range(1, len(totalReward) + 1))
|
||||
|
||||
# plt.plot(games, change_in_rewards)
|
||||
# plt.xlabel('Training Games')
|
||||
# plt.ylabel('Change in Game Reward')
|
||||
# plt.title('Change in Game Reward vs. Training Games')
|
||||
# plt.grid(True)
|
||||
# plt.show()
|
||||
# major_ticks = np.arange(0, 101, 20)
|
||||
# minor_ticks = np.arange(0, 101, 5)
|
||||
#
|
||||
# plt.plot([i for i in range(len(totalReward))], totalReward)
|
||||
# plt.title("Rewards to Games")
|
||||
# plt.xlabel("Games")
|
||||
# plt.ylabel("Reward")
|
||||
# plt.xticks(major_ticks)
|
||||
# plt.xticks(minor_ticks, minor=True)
|
||||
# plt.yticks(major_ticks)
|
||||
# plt.yticks(minor_ticks, minor=True)
|
||||
# plt.grid(which='both')
|
||||
# plt.show()
|
||||
#
|
||||
# plt.plot([i for i in range(len(filteredReward))], filteredReward)
|
||||
# plt.title("Filtered Rewards to Games")
|
||||
# plt.xlabel("Games")
|
||||
# plt.ylabel("Reward")
|
||||
# plt.grid(which='both')
|
||||
# plt.show()
|
56
rewards-5.txt
Normal file
56
rewards-5.txt
Normal file
@ -0,0 +1,56 @@
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
||||
0
|
BIN
rewardsA.png
Normal file
BIN
rewardsA.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 148 KiB |
500
trainedRewards.txt
Normal file
500
trainedRewards.txt
Normal file
@ -0,0 +1,500 @@
|
||||
180.5
|
||||
115.19999999999999
|
||||
-155.39999999999998
|
||||
-5169.4000000000015
|
||||
100.0
|
||||
-3354.2999999999956
|
||||
123.79999999999998
|
||||
-1738.0
|
||||
261.40000000000015
|
||||
120.89999999999999
|
||||
147.80000000000004
|
||||
108.0
|
||||
113.50000000000001
|
||||
110.5000000000002
|
||||
-1048.3000000000006
|
||||
75.8
|
||||
232.70000000000016
|
||||
89.10000000000001
|
||||
279.9000000000002
|
||||
165.40000000000003
|
||||
85.4
|
||||
34.20000000000016
|
||||
266.20000000000016
|
||||
101.69999999999999
|
||||
283.0
|
||||
-264.5
|
||||
225.0
|
||||
328.0
|
||||
215.5
|
||||
150.0
|
||||
-217.5
|
||||
-2920.0
|
||||
82.5
|
||||
-208.5
|
||||
150.5
|
||||
196.5
|
||||
223.0
|
||||
265.5
|
||||
-282.5
|
||||
175.5
|
||||
206.5
|
||||
221.5
|
||||
127.5
|
||||
-6337.5
|
||||
147.5
|
||||
231.5
|
||||
137.5
|
||||
-180.5
|
||||
108.0
|
||||
-339.5
|
||||
190.0
|
||||
-69.0
|
||||
52.5
|
||||
58.0
|
||||
-5575.0
|
||||
-159.5
|
||||
197.5
|
||||
177.5
|
||||
-5547.5
|
||||
-65.5
|
||||
136.5
|
||||
292.5
|
||||
-169.5
|
||||
185.0
|
||||
115.5
|
||||
198.0
|
||||
30.0
|
||||
162.5
|
||||
95.5
|
||||
170.0
|
||||
113.0
|
||||
-1405.0
|
||||
-27.0
|
||||
-4832.199999999999
|
||||
147.5
|
||||
228.0
|
||||
59.0
|
||||
262.5
|
||||
-220.0
|
||||
150.5
|
||||
177.5
|
||||
140.0
|
||||
123.0
|
||||
119.0
|
||||
137.5
|
||||
134.0
|
||||
175.5
|
||||
-5598.5
|
||||
46.5
|
||||
135.0
|
||||
205.0
|
||||
186.5
|
||||
177.5
|
||||
120.1
|
||||
332.5
|
||||
162.5
|
||||
122.5
|
||||
262.5
|
||||
-70.0
|
||||
159.0
|
||||
138.0
|
||||
240.5
|
||||
215.0
|
||||
147.5
|
||||
-118.0
|
||||
260.5
|
||||
199.0
|
||||
130.0
|
||||
265.0
|
||||
142.5
|
||||
230.0
|
||||
135.0
|
||||
197.5
|
||||
-179.5
|
||||
198.0
|
||||
288.0
|
||||
200.5
|
||||
-222.5
|
||||
165.5
|
||||
139.0
|
||||
228.0
|
||||
211.5
|
||||
197.5
|
||||
102.5
|
||||
233.0
|
||||
95.5
|
||||
-129.0
|
||||
187.5
|
||||
158.0
|
||||
295.0
|
||||
240.5
|
||||
-222.5
|
||||
-1841.5
|
||||
198.0
|
||||
113.0
|
||||
305.0
|
||||
-482.5
|
||||
125.5
|
||||
215.0
|
||||
110.0
|
||||
-180.0
|
||||
170.0
|
||||
-62.5
|
||||
215.5
|
||||
132.5
|
||||
187.5
|
||||
135.0
|
||||
-65.0
|
||||
138.0
|
||||
-1972.0
|
||||
240.5
|
||||
-237.5
|
||||
610.0
|
||||
267.5
|
||||
52.5
|
||||
-211.5
|
||||
217.5
|
||||
88.0
|
||||
305.5
|
||||
165.5
|
||||
115.0
|
||||
182.5
|
||||
-69.5
|
||||
333.0
|
||||
363.0
|
||||
112.5
|
||||
-15.5
|
||||
150.5
|
||||
118.0
|
||||
-52.5
|
||||
318.0
|
||||
174.0
|
||||
198.0
|
||||
-5705.0
|
||||
160.5
|
||||
155.0
|
||||
125.0
|
||||
165.0
|
||||
259.0
|
||||
165.5
|
||||
155.0
|
||||
-236.0
|
||||
220.5
|
||||
-15.5
|
||||
117.5
|
||||
367.5
|
||||
237.5
|
||||
255.0
|
||||
85.0
|
||||
-5342.5
|
||||
141.5
|
||||
-3582.5
|
||||
-600.0
|
||||
915.5
|
||||
179.0
|
||||
190.0
|
||||
-47.5
|
||||
275.5
|
||||
-5.0
|
||||
195.0
|
||||
128.0
|
||||
146.5
|
||||
750.5
|
||||
153.0
|
||||
-5157.5
|
||||
-279.5
|
||||
219.0
|
||||
154.0
|
||||
153.0
|
||||
-234.5
|
||||
248.0
|
||||
182.5
|
||||
122.5
|
||||
155.5
|
||||
1078.0
|
||||
102.5
|
||||
358.0
|
||||
152.5
|
||||
261.5
|
||||
239.0
|
||||
128.0
|
||||
111.5
|
||||
93.0
|
||||
310.5
|
||||
-87.0
|
||||
158.0
|
||||
113.0
|
||||
165.5
|
||||
120.0
|
||||
256.5
|
||||
90.5
|
||||
245.0
|
||||
159.0
|
||||
160.0
|
||||
-5272.0
|
||||
-88.5
|
||||
159.0
|
||||
169.0
|
||||
147.5
|
||||
-1149.5
|
||||
-372.0
|
||||
-270.0
|
||||
95.0
|
||||
142.5
|
||||
212.5
|
||||
154.0
|
||||
425.0
|
||||
153.0
|
||||
213.0
|
||||
280.5
|
||||
-80.5
|
||||
-45.90000000000003
|
||||
-2250.5
|
||||
123.50000000000003
|
||||
149.40000000000006
|
||||
219.0
|
||||
108.0
|
||||
180.0
|
||||
271.19999999999993
|
||||
202.5
|
||||
121.8000000000001
|
||||
47.599999999999966
|
||||
-35.0
|
||||
281.5
|
||||
307.5
|
||||
99.80000000000001
|
||||
154.0
|
||||
166.30000000000004
|
||||
271.5
|
||||
205.5
|
||||
145.5
|
||||
265.0
|
||||
113.0
|
||||
144.0
|
||||
88.0
|
||||
-204.5
|
||||
204.0
|
||||
215.0
|
||||
177.5
|
||||
168.0
|
||||
263.0
|
||||
66.5
|
||||
258.0
|
||||
-5477.5
|
||||
94.5
|
||||
-139.0
|
||||
190.5
|
||||
160.0
|
||||
-35.5
|
||||
149.0
|
||||
100.5
|
||||
130.0
|
||||
-40.0
|
||||
175.0
|
||||
132.5
|
||||
107.5
|
||||
143.0
|
||||
-5097.5
|
||||
97.5
|
||||
-1880.0
|
||||
-15.0
|
||||
213.0
|
||||
-601.0
|
||||
282.5
|
||||
276.5
|
||||
113.0
|
||||
106.5
|
||||
-1011.5
|
||||
128.0
|
||||
150.0
|
||||
145.5
|
||||
233.0
|
||||
209.0
|
||||
136.5
|
||||
240.0
|
||||
7.5
|
||||
-1535.0
|
||||
238.0
|
||||
185.0
|
||||
157.5
|
||||
-1660.0
|
||||
-15.5
|
||||
-145.0
|
||||
178.0
|
||||
-4997.5
|
||||
182.5
|
||||
197.5
|
||||
355.5
|
||||
130.0
|
||||
232.5
|
||||
-5420.0
|
||||
190.0
|
||||
128.0
|
||||
115.0
|
||||
2.5
|
||||
149.0
|
||||
220.0
|
||||
-87.0
|
||||
-447.5
|
||||
-4122.5
|
||||
-67.5
|
||||
-425.0
|
||||
283.0
|
||||
925.0
|
||||
49.5
|
||||
-15.0
|
||||
233.0
|
||||
215.5
|
||||
234.0
|
||||
154.0
|
||||
141.5
|
||||
226.5
|
||||
220.0
|
||||
110.5
|
||||
270.0
|
||||
253.0
|
||||
-1944.0
|
||||
215.0
|
||||
250.5
|
||||
155.0
|
||||
260.5
|
||||
185.0
|
||||
261.5
|
||||
232.5
|
||||
177.5
|
||||
-97.5
|
||||
-196.0
|
||||
230.0
|
||||
205.5
|
||||
-367.0
|
||||
265.5
|
||||
180.0
|
||||
135.5
|
||||
139.0
|
||||
103.0
|
||||
314.0
|
||||
192.5
|
||||
179.0
|
||||
97.5
|
||||
52.5
|
||||
135.0
|
||||
184.0
|
||||
-305.0
|
||||
147.5
|
||||
206.5
|
||||
157.5
|
||||
243.0
|
||||
-6125.0
|
||||
257.5
|
||||
125.60000000000002
|
||||
190.0
|
||||
-6225.0
|
||||
96.5
|
||||
350.0
|
||||
193.0
|
||||
185.5
|
||||
206.5
|
||||
223.0
|
||||
-225.0
|
||||
117.5
|
||||
170.0
|
||||
223.0
|
||||
175.5
|
||||
210.0
|
||||
-222.0
|
||||
148.60000000000002
|
||||
-133.0
|
||||
-193.5
|
||||
152.5
|
||||
-152.0
|
||||
-6245.0
|
||||
-2.0
|
||||
50.5
|
||||
-140.5
|
||||
185.5
|
||||
125.5
|
||||
208.0
|
||||
-200.0
|
||||
202.5
|
||||
112.5
|
||||
119.0
|
||||
210.5
|
||||
-1199.5
|
||||
-2.5
|
||||
102.5
|
||||
0.5
|
||||
275.5
|
||||
135.5
|
||||
-32.5
|
||||
235.5
|
||||
-617.0
|
||||
110.0
|
||||
222.5
|
||||
-372.0
|
||||
-53.0
|
||||
306.5
|
||||
117.5
|
||||
-5095.0
|
||||
223.0
|
||||
-257.0
|
||||
-5760.0
|
||||
11.5
|
||||
182.5
|
||||
160.0
|
||||
325.5
|
||||
151.5
|
||||
-327.5
|
||||
-5655.0
|
||||
62.5
|
||||
-5550.0
|
||||
195.0
|
||||
92.5
|
||||
-5290.0
|
||||
215.0
|
||||
59.0
|
||||
179.0
|
||||
188.0
|
||||
-2103.5
|
||||
253.0
|
||||
118.0
|
||||
335.0
|
||||
85.0
|
||||
207.5
|
||||
229.0
|
||||
152.5
|
||||
-188.5
|
||||
-177.5
|
||||
274.0
|
||||
220.0
|
||||
-5169.5
|
||||
128.0
|
||||
-1260.0
|
||||
140.0
|
||||
147.5
|
||||
140.0
|
||||
-505.0
|
||||
155.0
|
||||
225.5
|
||||
188.0
|
||||
131.5
|
||||
1111.5
|
||||
180.0
|
||||
-4897.5
|
||||
-687.5
|
||||
125.0
|
||||
180.0
|
||||
111.5
|
||||
-5582.5
|
||||
232.5
|
||||
153.0
|
||||
-130.5
|
||||
102.5
|
||||
189.0
|
||||
157.5
|
||||
-5685.0
|
||||
325.0
|
||||
-6870.0
|
||||
-520.5
|
||||
-3027.0
|
||||
32.5
|
500
trainedWinners.txt
Normal file
500
trainedWinners.txt
Normal file
@ -0,0 +1,500 @@
|
||||
2
|
||||
0
|
||||
2
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
0
|
||||
2
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
2
|
||||
0
|
||||
2
|
||||
2
|
||||
2
|
||||
0
|
||||
1
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
1
|
||||
1
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
0
|
||||
2
|
||||
1
|
||||
1
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
2
|
||||
2
|
||||
0
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
0
|
||||
2
|
||||
2
|
||||
2
|
||||
0
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
0
|
||||
2
|
||||
0
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
0
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
0
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
22
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
1
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
0
|
||||
1
|
||||
1
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
0
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
2
|
||||
2
|
||||
1
|
||||
1
|
||||
2
|
||||
2
|
||||
0
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
0
|
||||
2
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
0
|
||||
1
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
0
|
||||
2
|
||||
2
|
||||
2
|
||||
0
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
3
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
2
|
||||
2
|
||||
0
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
2
|
||||
0
|
||||
2
|
||||
2
|
||||
0
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
0
|
||||
2
|
||||
0
|
||||
2
|
||||
2
|
||||
0
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
0
|
||||
2
|
||||
0
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
0
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
0
|
||||
2
|
||||
0
|
||||
2
|
||||
0
|
||||
1
|
||||
2
|
||||
2
|
390
utilities/Board.py
Normal file
390
utilities/Board.py
Normal file
@ -0,0 +1,390 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import pygame
|
||||
from copy import deepcopy
|
||||
from .constants import BLACK, ROWS, GREEN, SQUARE_SIZE, COLS, WHITE
|
||||
from .piece import Piece
|
||||
|
||||
|
||||
class Board:
|
||||
def __init__(self) -> None:
|
||||
"""
|
||||
Constructor for the Board class
|
||||
:return: None
|
||||
"""
|
||||
self.board = []
|
||||
self.greenLeft = self.whiteLeft = 12
|
||||
self.greenKings = self.whiteKings = 0
|
||||
self.green = (144, 184, 59)
|
||||
self._createBoard()
|
||||
|
||||
def _drawSquares(self, win: pygame.display) -> None:
|
||||
"""
|
||||
Draws the squares on the board
|
||||
:param win: The window
|
||||
"""
|
||||
win.fill(BLACK)
|
||||
for row in range(ROWS):
|
||||
for col in range(row % 2, ROWS, 2):
|
||||
pygame.draw.rect(win, self.green, (row * SQUARE_SIZE, col * SQUARE_SIZE, SQUARE_SIZE, SQUARE_SIZE))
|
||||
|
||||
def _createBoard(self) -> None:
|
||||
"""
|
||||
Creates a board representation of the game
|
||||
:return: None
|
||||
"""
|
||||
for row in range(ROWS):
|
||||
self.board.append([])
|
||||
for col in range(COLS):
|
||||
if col % 2 == ((row + 1) % 2):
|
||||
if row < 3:
|
||||
self.board[row].append(Piece(row, col, WHITE))
|
||||
continue
|
||||
|
||||
if row > 4:
|
||||
self.board[row].append(Piece(row, col, GREEN))
|
||||
continue
|
||||
|
||||
self.board[row].append(0)
|
||||
continue
|
||||
|
||||
self.board[row].append(0)
|
||||
|
||||
def draw(self, win: pygame.display) -> None:
|
||||
"""
|
||||
Draws the pieces on the board
|
||||
:param win: The window
|
||||
:return: None
|
||||
"""
|
||||
self._drawSquares(win)
|
||||
for row in range(ROWS):
|
||||
for col in range(COLS):
|
||||
piece = self.board[row][col]
|
||||
if piece != 0:
|
||||
piece.draw(win)
|
||||
|
||||
def move(self, piece: Piece, row: int, col: int) -> None:
|
||||
"""
|
||||
Moves a piece and make it a king if it reaches the end of the board
|
||||
:param piece: Piece to move
|
||||
:param row: Row to move to
|
||||
:param col: Column to move to
|
||||
:return: None
|
||||
"""
|
||||
self.board[piece.row][piece.col], self.board[row][col] = self.board[row][col], self.board[piece.row][piece.col]
|
||||
piece.move(row, col)
|
||||
|
||||
if row == ROWS - 1 or row == 0:
|
||||
piece.makeKing()
|
||||
|
||||
if piece.colour == WHITE:
|
||||
self.whiteKings += 1
|
||||
|
||||
if piece.colour == GREEN:
|
||||
self.greenKings += 1
|
||||
|
||||
def remove(self, skipped: tuple) -> None:
|
||||
"""
|
||||
Removes a piece from the board
|
||||
:param skipped: A tuple of the piece to remove
|
||||
"""
|
||||
for piece in skipped:
|
||||
self.board[piece.row][piece.col] = 0
|
||||
if piece != 0:
|
||||
if piece.colour == GREEN:
|
||||
self.greenLeft -= 1
|
||||
continue
|
||||
self.whiteLeft -= 1
|
||||
|
||||
def getAllMoves(self, colour: int) -> list:
|
||||
"""
|
||||
Gets all the possible moves for a player
|
||||
:param colour: colour of the player
|
||||
:return:
|
||||
"""
|
||||
moves = []
|
||||
possibleMoves = []
|
||||
possiblePieces = []
|
||||
pieces = self.getAllPieces(colour)
|
||||
hasForcedCapture = False
|
||||
|
||||
for piece in pieces:
|
||||
validMoves = self.getValidMoves(piece)
|
||||
|
||||
# Check if there are forced capture moves for this piece
|
||||
forcedCaptureMoves = [move for move, skip in validMoves.items() if skip]
|
||||
if forcedCaptureMoves:
|
||||
hasForcedCapture = True
|
||||
possiblePieces.append(piece)
|
||||
possibleMoves.append({move: skip for move, skip in validMoves.items() if skip})
|
||||
|
||||
if hasForcedCapture:
|
||||
# If there are forced capture moves, consider only those
|
||||
for i in range(len(possibleMoves)):
|
||||
for move, skip in possibleMoves[i].items():
|
||||
tempBoard = deepcopy(self)
|
||||
tempPiece = tempBoard.getPiece(possiblePieces[i].row, possiblePieces[i].col)
|
||||
newBoard = self._simulateMove(tempPiece, move, tempBoard, skip)
|
||||
moves.append(newBoard)
|
||||
else:
|
||||
# If no forced capture moves, consider all valid moves
|
||||
for piece in pieces:
|
||||
validMoves = self.getValidMoves(piece)
|
||||
for move, skip in validMoves.items():
|
||||
tempBoard = deepcopy(self)
|
||||
tempPiece = tempBoard.getPiece(piece.row, piece.col)
|
||||
newBoard = self._simulateMove(tempPiece, move, tempBoard, skip)
|
||||
moves.append(newBoard)
|
||||
|
||||
return moves
|
||||
|
||||
def _simulateMove(self, piece: Piece, move: list, board: Board, skip: tuple) -> Board:
|
||||
"""
|
||||
Simulates a move on the board
|
||||
:param piece: Piece to move
|
||||
:param move: Move to make
|
||||
:param board: Board to make the move on
|
||||
:param skip: Tuple of pieces to skip
|
||||
:return: Board after the move
|
||||
"""
|
||||
board.move(piece, move[0], move[1])
|
||||
if skip:
|
||||
board.remove(skip)
|
||||
|
||||
return board
|
||||
|
||||
def getPiece(self, row: int, col: int) -> Piece:
|
||||
"""
|
||||
Gets a piece from the board
|
||||
:param row: Row of the piece
|
||||
:param col: Column of the piece
|
||||
:return: Piece
|
||||
"""
|
||||
return self.board[row][col]
|
||||
|
||||
def winner(self):
|
||||
if self.greenLeft <= 0:
|
||||
return WHITE
|
||||
|
||||
if self.whiteLeft <= 0:
|
||||
return GREEN
|
||||
|
||||
return None
|
||||
|
||||
def getValidMoves(self, piece: Piece) -> dict:
|
||||
"""
|
||||
Gets all the valid moves for a piece
|
||||
:param piece: Piece to get the moves for
|
||||
:return: dictionary of moves
|
||||
"""
|
||||
moves = {}
|
||||
forcedCapture = {}
|
||||
left = piece.col - 1
|
||||
right = piece.col + 1
|
||||
row = piece.row
|
||||
if piece.colour == GREEN or piece.king:
|
||||
moves.update(self._traverseLeft(row - 1, max(row - 3, -1), -1, piece.colour, left))
|
||||
moves.update(self._traverseRight(row - 1, max(row - 3, -1), -1, piece.colour, right))
|
||||
if piece.colour == WHITE or piece.king:
|
||||
moves.update(self._traverseLeft(row + 1, min(row + 3, ROWS), 1, piece.colour, left))
|
||||
moves.update(self._traverseRight(row + 1, min(row + 3, ROWS), 1, piece.colour, right))
|
||||
|
||||
if len(moves.values()) <= 1:
|
||||
return moves
|
||||
|
||||
movesValues = list(moves.values())
|
||||
movesKeys = list(moves.keys())
|
||||
|
||||
forced = {}
|
||||
|
||||
for i in range(len(movesKeys)):
|
||||
if not movesValues[i]:
|
||||
forced[movesKeys[i]] = moves[movesKeys[i]]
|
||||
if len(forced) != len(moves):
|
||||
forced.clear()
|
||||
for i in range(len(movesKeys)):
|
||||
if movesValues[i]:
|
||||
forced[movesKeys[i]] = moves[movesKeys[i]]
|
||||
if len(forced) != len(moves):
|
||||
for i in range(len(movesKeys)):
|
||||
if movesValues[i]:
|
||||
forcedCapture[movesKeys[i]] = moves[movesKeys[i]]
|
||||
else:
|
||||
forcedCapture = forced
|
||||
else:
|
||||
forcedCapture = forced
|
||||
|
||||
return forcedCapture
|
||||
|
||||
def scoreOfTheBoard(self) -> int:
|
||||
"""
|
||||
Calculates the score of the board
|
||||
:return: score of the board
|
||||
"""
|
||||
return self.whiteLeft - self.greenLeft
|
||||
|
||||
def getAllPieces(self, colour):
|
||||
"""
|
||||
Gets all the pieces of a player
|
||||
:param colour: Piece colour
|
||||
:return: Pieces of the player
|
||||
"""
|
||||
pieces = []
|
||||
for row in self.board:
|
||||
for piece in row:
|
||||
if piece != 0 and piece.colour == colour:
|
||||
pieces.append(piece)
|
||||
return pieces
|
||||
|
||||
def _traverseLeft(self, start: int, stop: int, step: int, colour: int, left: int, skipped: list = []) -> dict:
|
||||
"""
|
||||
Traverses the left side of the board
|
||||
:param start: Start position
|
||||
:param stop: Stop position
|
||||
:param step: Step size
|
||||
:param colour: colour of the player
|
||||
:param left: Left position
|
||||
:param skipped: List of pieces to skip
|
||||
:return: dictionary of moves
|
||||
"""
|
||||
moves = {}
|
||||
last = []
|
||||
for row in range(start, stop, step):
|
||||
if left < 0:
|
||||
break
|
||||
mvs = self._traverse(row, left, skipped, moves, step, last, colour)
|
||||
if mvs is None:
|
||||
break
|
||||
elif isinstance(mvs, list):
|
||||
last = mvs
|
||||
else:
|
||||
moves.update(mvs)
|
||||
left -= 1
|
||||
return moves
|
||||
|
||||
def _traverseRight(self, start: int, stop: int, step: int, colour: int, right: int, skipped: list = []) -> dict:
|
||||
"""
|
||||
Traverses the left side of the board
|
||||
:param start: Start position
|
||||
:param stop: Stop position
|
||||
:param step: Step size
|
||||
:param colour: colour of the player
|
||||
:param right: Right position
|
||||
:param skipped: List of pieces to skip
|
||||
:return: dictionary of moves
|
||||
"""
|
||||
moves = {}
|
||||
last = []
|
||||
for row in range(start, stop, step):
|
||||
if right >= COLS:
|
||||
break
|
||||
|
||||
mvs = self._traverse(row, right, skipped, moves, step, last, colour)
|
||||
if mvs is None:
|
||||
break
|
||||
elif isinstance(mvs, list):
|
||||
last = mvs
|
||||
else:
|
||||
moves.update(mvs)
|
||||
|
||||
right += 1
|
||||
return moves
|
||||
|
||||
def _traverse(self, row: int, col: int, skipped: list, moves: dict, step: int, last: list, colour: int) -> list or None:
|
||||
"""
|
||||
Traverses the board
|
||||
:param row: Row to traverse
|
||||
:param col: Column to traverse
|
||||
:param skipped: List of pieces to jump
|
||||
:param moves: Dictionary of moves
|
||||
:param step: Step size
|
||||
:param last: List of last pieces
|
||||
:param colour: Colour of the player
|
||||
:return: list of last pieces or None
|
||||
"""
|
||||
current = self.board[row][col]
|
||||
if current == 0:
|
||||
if skipped and not last:
|
||||
return None
|
||||
elif skipped:
|
||||
moves[(row, col)] = last + skipped
|
||||
else:
|
||||
moves[(row, col)] = last
|
||||
|
||||
if last:
|
||||
if step == -1:
|
||||
rowCalc = max(row - 3, 0)
|
||||
else:
|
||||
rowCalc = min(row + 3, ROWS)
|
||||
moves.update(self._traverseLeft(row + step, rowCalc, step, colour, col - 1, skipped=last))
|
||||
moves.update(self._traverseRight(row + step, rowCalc, step, colour, col + 1, skipped=last))
|
||||
return None
|
||||
elif current.colour == colour:
|
||||
return None
|
||||
else:
|
||||
last = [current]
|
||||
return last
|
||||
|
||||
def step(self, move: int, colour: int) -> None:
|
||||
"""
|
||||
Takes a move and executes it
|
||||
:param move: The move to execute
|
||||
:param colour: The colour of the player
|
||||
:return: None
|
||||
"""
|
||||
start, end = self._decode(move)
|
||||
start[0] = start[0] - 1
|
||||
start[1] = start[1] - 1
|
||||
end[0] = end[0] - 1
|
||||
end[1] = end[1] - 1
|
||||
reward = 0
|
||||
done = False
|
||||
piece = self.getPiece(start[0], start[1])
|
||||
if piece == 0:
|
||||
newStart = end
|
||||
end = start
|
||||
start = newStart
|
||||
piece = self.getPiece(start[0], start[1])
|
||||
moves = self.getValidMoves(piece)
|
||||
for move, skip in moves.items():
|
||||
if tuple(end) == move:
|
||||
self._simulateMove(piece, move, self, skip)
|
||||
if len(skip) == 1:
|
||||
reward = 2
|
||||
break
|
||||
if len(skip) > 1:
|
||||
reward = 3 + len(skip) * 0.2
|
||||
break
|
||||
reward = -0.5
|
||||
break
|
||||
|
||||
if self.winner() == colour:
|
||||
done = True
|
||||
reward = 10
|
||||
return reward, self, done
|
||||
|
||||
|
||||
def _decode(self, move: int) -> tuple:
|
||||
"""
|
||||
Decodes the move from a integer to a start and end tuple
|
||||
:param move: The move to decode
|
||||
:return: Start and end tuple
|
||||
"""
|
||||
# Split digits back out
|
||||
str_code = str(move)
|
||||
# print(str_code)
|
||||
start_row = int(str_code[0])
|
||||
start_col = int(str_code[1])
|
||||
end_row = int(str_code[2])
|
||||
end_col = int(str_code[3])
|
||||
# Reconstruct positions
|
||||
start = [start_row, start_col]
|
||||
end = [end_row, end_col]
|
||||
return start, end
|
||||
|
||||
# def reset(self):
|
||||
# self.board = []
|
||||
# self.whiteLeft = self.greenLeft = 12
|
||||
# self.whiteKings = self.greenKings = 0
|
||||
# self._createBoard()
|
||||
# return self.board
|
@ -1,185 +0,0 @@
|
||||
import pygame
|
||||
|
||||
from .constants import BLACK, ROWS, GREEN, SQUARE_SIZE, COLS, WHITE
|
||||
from .piece import Piece
|
||||
|
||||
|
||||
class Board:
|
||||
def __init__(self):
|
||||
self.board = []
|
||||
self.greenLeft = self.whiteLeft = 12
|
||||
self.greenKings = self.whiteKings = 0
|
||||
self.createBoard()
|
||||
|
||||
def drawSquares(self, win):
|
||||
win.fill(BLACK)
|
||||
for row in range(ROWS):
|
||||
for col in range(row % 2, ROWS, 2):
|
||||
pygame.draw.rect(win, GREEN, (row * SQUARE_SIZE, col * SQUARE_SIZE, SQUARE_SIZE, SQUARE_SIZE))
|
||||
|
||||
def createBoard(self):
|
||||
for row in range(ROWS):
|
||||
self.board.append([])
|
||||
for col in range(COLS):
|
||||
if col % 2 == ((row + 1) % 2):
|
||||
if row < 3:
|
||||
self.board[row].append(Piece(row, col, WHITE))
|
||||
elif row > 4:
|
||||
self.board[row].append(Piece(row, col, GREEN))
|
||||
else:
|
||||
self.board[row].append(None)
|
||||
else:
|
||||
self.board[row].append(None)
|
||||
|
||||
def draw(self, win):
|
||||
self.drawSquares(win)
|
||||
for row in range(ROWS):
|
||||
for col in range(COLS):
|
||||
piece = self.board[row][col]
|
||||
if piece is not None:
|
||||
piece.draw(win)
|
||||
|
||||
def move(self, piece, row, col):
|
||||
self.board[piece.row][piece.col], self.board[row][col] = self.board[row][col], self.board[piece.row][piece.col]
|
||||
piece.move(row, col)
|
||||
|
||||
if row == ROWS - 1 or row == 0:
|
||||
piece.makeKing()
|
||||
if piece.colour == WHITE:
|
||||
self.whiteKings += 1
|
||||
else:
|
||||
self.greenKings += 1
|
||||
|
||||
def remove(self, skipped):
|
||||
for piece in skipped:
|
||||
self.board[piece.row][piece.col] = None
|
||||
if piece is not None:
|
||||
if piece.colour == GREEN:
|
||||
self.greenLeft -= 1
|
||||
else:
|
||||
self.whiteLeft -= 1
|
||||
|
||||
def getPiece(self, row, col):
|
||||
return self.board[row][col]
|
||||
|
||||
def winner(self):
|
||||
if self.greenLeft <= 0:
|
||||
return WHITE
|
||||
elif self.whiteLeft <= 0:
|
||||
return GREEN
|
||||
|
||||
return None
|
||||
|
||||
def getValidMoves(self, piece):
|
||||
moves = {}
|
||||
forcedCapture = {}
|
||||
left = piece.col - 1
|
||||
right = piece.col + 1
|
||||
row = piece.row
|
||||
if piece.colour == GREEN:
|
||||
moves.update(self._traverseLeft(row - 1, max(row - 3, -1), -1, piece.colour, left))
|
||||
moves.update(self._traverseRight(row - 1, max(row - 3, -1), -1, piece.colour, right))
|
||||
if piece.colour == WHITE:
|
||||
moves.update(self._traverseLeft(row + 1, min(row + 3, ROWS), 1, piece.colour, left))
|
||||
moves.update(self._traverseRight(row + 1, min(row + 3, ROWS), 1, piece.colour, right))
|
||||
|
||||
if piece.king:
|
||||
moves.update(self._traverseLeft(row - 1, max(row - 3, -1), -1, piece.colour, left))
|
||||
moves.update(self._traverseRight(row - 1, max(row - 3, -1), -1, piece.colour, right))
|
||||
moves.update(self._traverseLeft(row + 1, min(row + 3, ROWS), 1, piece.colour, left))
|
||||
moves.update(self._traverseRight(row + 1, min(row + 3, ROWS), 1, piece.colour, right))
|
||||
|
||||
if len(moves.values()) <= 1:
|
||||
return moves
|
||||
|
||||
movesValues = list(moves.values())
|
||||
movesKeys = list(moves.keys())
|
||||
|
||||
forced = {}
|
||||
|
||||
for i in range(len(movesKeys)):
|
||||
if not movesValues[i]:
|
||||
forced[movesKeys[i]] = moves[movesKeys[i]]
|
||||
if len(forced) != len(moves):
|
||||
forced.clear()
|
||||
for i in range(len(movesKeys)):
|
||||
if movesValues[i]:
|
||||
forced[movesKeys[i]] = moves[movesKeys[i]]
|
||||
if len(forced) != len(moves):
|
||||
for i in range(len(movesKeys)):
|
||||
if movesValues[i]:
|
||||
forcedCapture[movesKeys[i]] = moves[movesKeys[i]]
|
||||
else:
|
||||
forcedCapture = forced
|
||||
else:
|
||||
forcedCapture = forced
|
||||
return forcedCapture
|
||||
|
||||
def scoreOfTheBoard(self):
|
||||
return self.whiteLeft - self.greenLeft
|
||||
|
||||
def getAllPieces(self, colour):
|
||||
pieces = []
|
||||
for row in self.board:
|
||||
for piece in row:
|
||||
if piece is not None and piece.colour == colour:
|
||||
pieces.append(piece)
|
||||
return pieces
|
||||
|
||||
def _traverseLeft(self, start, stop, step, colour, left, skipped=[]):
|
||||
moves = {}
|
||||
last = []
|
||||
for row in range(start, stop, step):
|
||||
if left < 0:
|
||||
break
|
||||
mvs = self._traverse(row, left, skipped, moves, step, last, colour)
|
||||
if mvs is None:
|
||||
break
|
||||
elif isinstance(mvs, list):
|
||||
last = mvs
|
||||
else:
|
||||
moves.update(mvs)
|
||||
left -= 1
|
||||
return moves
|
||||
|
||||
def _traverseRight(self, start, stop, step, colour, right, skipped=[]):
|
||||
moves = {}
|
||||
last = []
|
||||
for row in range(start, stop, step):
|
||||
if right >= COLS:
|
||||
break
|
||||
|
||||
mvs = self._traverse(row, right, skipped, moves, step, last, colour)
|
||||
if mvs is None:
|
||||
break
|
||||
elif isinstance(mvs, list):
|
||||
last = mvs
|
||||
else:
|
||||
moves.update(mvs)
|
||||
|
||||
right += 1
|
||||
return moves
|
||||
|
||||
def _traverse(self, row, col, skipped, moves, step, last, colour):
|
||||
current = self.board[row][col]
|
||||
if current is None:
|
||||
if skipped and not last:
|
||||
return None
|
||||
elif skipped:
|
||||
moves[(row, col)] = last + skipped
|
||||
else:
|
||||
moves[(row, col)] = last
|
||||
|
||||
if last:
|
||||
if step == -1:
|
||||
rowCalc = max(row - 3, 0)
|
||||
else:
|
||||
rowCalc = min(row + 3, ROWS)
|
||||
moves.update(self._traverseLeft(row + step, rowCalc, step, colour, col - 1, skipped=last))
|
||||
moves.update(self._traverseRight(row + step, rowCalc, step, colour, col + 1, skipped=last))
|
||||
return None
|
||||
elif current.colour == colour:
|
||||
return None
|
||||
else:
|
||||
last = [current]
|
||||
return last
|
@ -4,10 +4,10 @@ WIDTH, HEIGHT = 800, 800
|
||||
ROWS, COLS = 8, 8
|
||||
SQUARE_SIZE = WIDTH // COLS
|
||||
|
||||
# RGB color
|
||||
# RGB colour
|
||||
|
||||
GREEN = (144, 184, 59)
|
||||
WHITE = (255, 255, 255)
|
||||
GREEN = 1
|
||||
WHITE = 2
|
||||
BLACK = (0, 0, 0)
|
||||
BLUE = (0, 0, 255)
|
||||
GREY = (128, 128, 128)
|
||||
|
@ -1,42 +1,74 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import pygame
|
||||
from utilities.board import Board
|
||||
from utilities.Board import Board
|
||||
from utilities.constants import GREEN, WHITE, BLUE, SQUARE_SIZE
|
||||
|
||||
|
||||
class GameManager:
|
||||
def __init__(self, win, colour):
|
||||
def __init__(self, win: pygame.display, colour: int) -> None:
|
||||
"""
|
||||
Constructor for the GameManager class
|
||||
:param win: The window
|
||||
:param colour: The colour of the player
|
||||
"""
|
||||
self._init(colour)
|
||||
self.win = win
|
||||
|
||||
def _init(self, colour):
|
||||
def _init(self, colour: int) -> None:
|
||||
"""
|
||||
Initializes the game
|
||||
:param colour: the colour of the player
|
||||
"""
|
||||
self.selected = None
|
||||
self.board = Board()
|
||||
self.turn = colour
|
||||
self.validMoves = {}
|
||||
self.legCount = 0
|
||||
|
||||
def update(self):
|
||||
def update(self) -> None:
|
||||
"""
|
||||
Updates the GUI
|
||||
return: None
|
||||
"""
|
||||
self.board.draw(self.win)
|
||||
self.drawValidMoves(self.validMoves)
|
||||
pygame.display.update()
|
||||
|
||||
def reset(self):
|
||||
def reset(self) -> None:
|
||||
"""
|
||||
Resets the game
|
||||
:return: None
|
||||
"""
|
||||
self._init(self.turn)
|
||||
|
||||
def select(self, row, col):
|
||||
def select(self, row: int, col: int) -> bool:
|
||||
"""
|
||||
Selects a piece
|
||||
:param row: Row of the piece
|
||||
:param col: Column of the piece
|
||||
:return: True
|
||||
"""
|
||||
if self.selected:
|
||||
result = self._move(row, col)
|
||||
if not result:
|
||||
self.selected = None
|
||||
self.select(row, col)
|
||||
piece = self.board.getPiece(row, col)
|
||||
if piece is not None and piece.colour == self.turn:
|
||||
if piece != 0 and piece.colour == self.turn:
|
||||
self.selected = piece
|
||||
self.validMoves = self.board.getValidMoves(piece)
|
||||
return True
|
||||
|
||||
def _move(self, row, col):
|
||||
def _move(self, row: int, col: int) -> bool:
|
||||
"""
|
||||
Moves a piece
|
||||
:param row: Row of the piece
|
||||
:param col: Column of the piece
|
||||
:return: True if the move was successful, False otherwise
|
||||
"""
|
||||
piece = self.board.getPiece(row, col)
|
||||
if self.selected and piece is None and (row, col) in self.validMoves:
|
||||
if self.selected and piece == 0 and (row, col) in self.validMoves:
|
||||
self.board.move(self.selected, row, col)
|
||||
skipped = self.validMoves[row, col]
|
||||
if self.validMoves[list(self.validMoves.keys())[0]]:
|
||||
@ -58,21 +90,39 @@ class GameManager:
|
||||
self.validMoves = {}
|
||||
if self.turn == GREEN:
|
||||
self.turn = WHITE
|
||||
else:
|
||||
return
|
||||
self.turn = GREEN
|
||||
|
||||
def drawValidMoves(self, moves):
|
||||
def drawValidMoves(self, moves: list) -> None:
|
||||
"""
|
||||
Draws the valid moves
|
||||
:param moves: list of valid moves
|
||||
:return: None
|
||||
"""
|
||||
for row, col in moves:
|
||||
pygame.draw.circle(self.win, BLUE,
|
||||
(col * SQUARE_SIZE + SQUARE_SIZE // 2, row * SQUARE_SIZE + SQUARE_SIZE // 2), 15)
|
||||
|
||||
def winner(self):
|
||||
def winner(self) -> int or None:
|
||||
"""
|
||||
Gets the winner
|
||||
:return: The winner
|
||||
"""
|
||||
return self.board.winner()
|
||||
|
||||
def getBoard(self):
|
||||
def getBoard(self) -> Board:
|
||||
"""
|
||||
Gets the board
|
||||
:return: The board
|
||||
"""
|
||||
return self.board
|
||||
|
||||
def aiMove(self, board):
|
||||
def aiMove(self, board: Board) -> None:
|
||||
"""
|
||||
Makes a move for the AI
|
||||
:param board: The new board
|
||||
:return: None
|
||||
"""
|
||||
if board is None:
|
||||
# colour = "green" if self.turn == GREEN else "white"
|
||||
# print("no move left for " + colour + " to make")
|
||||
|
@ -1,10 +1,16 @@
|
||||
import pygame.draw
|
||||
|
||||
from utilities.constants import SQUARE_SIZE, GREY, CROWN
|
||||
from utilities.constants import SQUARE_SIZE, GREY, CROWN, GREEN
|
||||
|
||||
|
||||
class Piece:
|
||||
def __init__(self, row, col, colour):
|
||||
def __init__(self, row: int, col: int, colour: int) -> None:
|
||||
"""
|
||||
Initialises the piece class, which represents a piece on the board. Constructor for the piece class
|
||||
:param row: Row of the piece
|
||||
:param col: Column of the piece
|
||||
:param colour: Colour of the piece
|
||||
"""
|
||||
self.row = row
|
||||
self.col = col
|
||||
self.colour = colour
|
||||
@ -14,25 +20,50 @@ class Piece:
|
||||
self.calcPosition()
|
||||
self.padding = 20
|
||||
self.border = 2
|
||||
self.green = (144, 184, 59)
|
||||
self.white = (255, 255, 255)
|
||||
|
||||
def calcPosition(self):
|
||||
def calcPosition(self) -> None:
|
||||
"""
|
||||
Calculates the position of the piece
|
||||
:return: None
|
||||
"""
|
||||
self.x = SQUARE_SIZE * self.col + SQUARE_SIZE // 2
|
||||
self.y = SQUARE_SIZE * self.row + SQUARE_SIZE // 2
|
||||
|
||||
def makeKing(self):
|
||||
def makeKing(self) -> None:
|
||||
"""
|
||||
Makes the piece a king
|
||||
:return: None
|
||||
"""
|
||||
self.king = True
|
||||
|
||||
def draw(self, win):
|
||||
def draw(self, win) -> None:
|
||||
"""
|
||||
Draws the piece
|
||||
:param win: The window to draw the piece on
|
||||
:return: None
|
||||
"""
|
||||
radius = SQUARE_SIZE // 2 - self.padding
|
||||
pygame.draw.circle(win, GREY, (self.x, self.y), radius + self.border)
|
||||
pygame.draw.circle(win, self.colour, (self.x, self.y), radius)
|
||||
pygame.draw.circle(win, self.green if self.colour == GREEN else self.white, (self.x, self.y), radius)
|
||||
if self.king:
|
||||
win.blit(CROWN, (self.x - CROWN.get_width() // 2, self.y - CROWN.get_height() // 2))
|
||||
|
||||
def move(self, row, col):
|
||||
def move(self, row: int, col: int) -> None:
|
||||
"""
|
||||
Moves the piece to a new position
|
||||
:param row: Row to move to
|
||||
:param col: Column to move to
|
||||
:return: None
|
||||
"""
|
||||
self.row = row
|
||||
self.col = col
|
||||
self.calcPosition()
|
||||
|
||||
def __repr__(self):
|
||||
def __repr__(self) -> str:
|
||||
"""
|
||||
String representation of the piece
|
||||
:return: String representation of the colour
|
||||
"""
|
||||
return str(self.colour)
|
||||
|
100
winners-3.txt
Normal file
100
winners-3.txt
Normal file
@ -0,0 +1,100 @@
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
0
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
0
|
||||
0
|
||||
2
|
||||
1
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
0
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
0
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
1
|
||||
0
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
1
|
||||
0
|
||||
2
|
||||
0
|
||||
0
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
2
|
||||
2
|
||||
0
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
100
winners-5.txt
Normal file
100
winners-5.txt
Normal file
@ -0,0 +1,100 @@
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
1
|
||||
1
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
0
|
||||
2
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
2
|
||||
0
|
||||
2
|
||||
2
|
||||
0
|
||||
2
|
||||
2
|
||||
0
|
||||
0
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
0
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
0
|
||||
2
|
||||
2
|
||||
2
|
||||
0
|
||||
2
|
||||
0
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
1
|
||||
0
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
0
|
||||
2
|
||||
0
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
2
|
||||
1
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
||||
2
|
Loading…
Reference in New Issue
Block a user