reinforcement-learning #1

Merged
rodude123 merged 4 commits from reinforcement-learning into master 2023-09-28 23:59:04 +01:00
6 changed files with 124 additions and 45 deletions
Showing only changes of commit 6d4e364f8d - Show all commits

View File

@ -4,7 +4,7 @@
<content url="file://$MODULE_DIR$">
<excludeFolder url="file://$MODULE_DIR$/venv" />
</content>
<orderEntry type="jdk" jdkName="Python 3.11 (draughts)" jdkType="Python SDK" />
<orderEntry type="jdk" jdkName="$USER_HOME$/anaconda3" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
</module>

Binary file not shown.

45
main.py
View File

@ -1,6 +1,7 @@
import sys
import pygame
import numpy as np
from matplotlib import pyplot as plt
from reinforcementLearning.ReinforcementLearning import ReinforcementLearning
@ -178,23 +179,38 @@ def game(difficulty):
clock = pygame.time.Clock()
gameManager = GameManager(WIN, GREEN)
rl = ReinforcementLearning(gameManager.board.getAllMoves(WHITE), gameManager.board, WHITE, gameManager)
model = rl.buildMainModel()
model.load_weights("./modelWeights/model_final.h5")
mm = MiniMax()
totalReward = []
for i in range(2000):
winners = []
for i in range(100):
score = 0
for j in range(200):
print(j)
clock.tick(FPS)
reward = 0
if gameManager.turn == WHITE:
mm = MiniMax()
value, newBoard = mm.AI(difficulty, WHITE, gameManager)
# mm = MiniMax()
# value, newBoard = mm.AI(difficulty, WHITE, gameManager)
# gameManager.aiMove(newBoard)
# reward, newBoard = rl.AI(gameManager.board)
if newBoard is None:
actionSpace = rl.encodeMoves(WHITE, gameManager.board)
if len(actionSpace) == 0:
print("Cannot make move")
continue
totalMoves = len(actionSpace)
# moves = np.squeeze(moves)
moves = np.pad(actionSpace, (0, rl.maxSize - totalMoves), 'constant', constant_values=(1, 1))
act_values = model.predict(rl.normalise(moves))
val = np.argmax(act_values[0])
val = val if val < totalMoves else totalMoves - 1
reward, newBoard, done = gameManager.board.step(actionSpace[val], WHITE)
# if newBoard is None:
# print("Cannot make move")
# continue
gameManager.aiMove(newBoard)
#
gameManager.update()
pygame.display.update()
@ -206,7 +222,10 @@ def game(difficulty):
score += reward
if gameManager.winner() is not None:
print(gameManager.winner())
print("Green" if gameManager.winner() == GREEN else "White", " wins")
with open("winners.txt", "a+") as f:
f.write(str(gameManager.winner()) + "\n")
winners.append(gameManager.winner())
break
# for event in pygame.event.get():
@ -221,9 +240,16 @@ def game(difficulty):
gameManager.update()
pygame.display.update()
if gameManager.winner() is None:
with open("winners.txt", "a+") as f:
f.write(str(0) + "\n")
winners.append(0)
gameManager.reset()
rl.resetScore()
print("Game: ", i, " Reward: ", score)
with open("rewards.txt", "a+") as f:
f.write(str(score) + "\n")
totalReward.append(score)
# save model weights every 25 games
if i % 250 == 0 and i != 0:
@ -237,5 +263,12 @@ def game(difficulty):
plt.ylabel("Reward")
plt.show()
fig, ax = plt.subplots()
bar = ax.bar(["Draw", "White", "Green"], [winners.count(0), winners.count(WHITE), winners.count(GREEN)])
ax.set(xlabel='Winner', ylabel='Frequency', ylim=[0, 500])
ax.set_title("Winners")
ax.bar_label(bar)
plt.show()
main(3)

View File

@ -37,9 +37,10 @@ class ReinforcementLearning():
self.maxSize = 32
self.epsilonMin = .01
self.epsilonDecay = .995
self.learningRate = 0.001
self.learningRate = 0.0001
self.memory = deque(maxlen=10000000)
self.model = self._buildMainModel()
self.model = self.buildMainModel()
print(self.model.summary())
def AI(self, board: Board) -> tuple:
"""
@ -48,7 +49,7 @@ class ReinforcementLearning():
"""
self.board = board
self.state = self._convertState(self.board.board)
self.actionSpace = self._encodeMoves(self.colour, self.board)
self.actionSpace = self.encodeMoves(self.colour, self.board)
if len(self.actionSpace) == 0:
return self.score, None
@ -61,7 +62,7 @@ class ReinforcementLearning():
return self.score, nextState
def _buildMainModel(self) -> Sequential:
def buildMainModel(self) -> Sequential:
"""
Build the model for the AI
:return: the model
@ -69,26 +70,24 @@ class ReinforcementLearning():
# Board model
modelLayers = [
Lambda(lambda x: tf.reshape(x, [-1, 32])),
Dense(256, activation='relu'),
Dense(512, activation='relu', kernel_regularizer=regularizers.l2(0.01)),
Dropout(0.2),
Dense(128, activation='relu'),
Dense(256, activation='relu', kernel_regularizer=regularizers.l2(0.01)),
Dropout(0.2),
Dense(64, activation='relu'),
Dense(128, activation='relu', kernel_regularizer=regularizers.l2(0.01)),
Dropout(0.2),
Dense(64, activation='relu', kernel_regularizer=regularizers.l2(0.01)),
Dropout(0.2),
Dense(32, activation='relu', kernel_regularizer=regularizers.l2(0.01)),
Dropout(0.2),
Dense(16, activation='relu', kernel_regularizer=regularizers.l2(0.01)),
Dropout(0.2),
Dense(1, activation='linear', kernel_regularizer=regularizers.l2(0.01))
Dense(16, activation='linear', kernel_regularizer=regularizers.l2(0.01))
]
boardModel = Sequential(modelLayers)
# boardModel.add(BatchNormalization())
boardModel.compile(optimizer=Adam(learning_rate=0.0001), loss='mean_squared_error')
boardModel.compile(optimizer=Adam(learning_rate=self.learningRate), loss='mean_squared_error')
boardModel.build(input_shape=(None, None))
print(boardModel.summary())
return boardModel
def _replay(self) -> None:
@ -111,7 +110,7 @@ class ReinforcementLearning():
# Encoded moves
encodedMoves = []
for state in states:
encodedMoves.append(self._encodeMoves(self.colour, state))
encodedMoves.append(self.encodeMoves(self.colour, state))
# Calculate targets
targets = []
@ -126,7 +125,7 @@ class ReinforcementLearning():
encodedMoves = np.array([np.pad(m, (0, self.maxSize - len(m)), 'constant', constant_values=(1, 1))
for m in encodedMoves])
targets = np.array(targets)
self.model.fit(self._normalise(encodedMoves), self._normalise(targets), epochs=20)
self.model.fit(self.normalise(encodedMoves), self.normalise(targets), epochs=20)
if self.epsilon > self.epsilonMin:
self.epsilon *= self.epsilonDecay
@ -160,8 +159,10 @@ class ReinforcementLearning():
return self.actionSpace[0]
encodedMoves = np.squeeze(self.actionSpace)
encodedMoves = np.pad(encodedMoves, (0, self.maxSize - len(encodedMoves)), 'constant', constant_values=(1, 1))
act_values = self.model.predict(self._normalise(encodedMoves))
return self.actionSpace[np.argmax(act_values[0])]
act_values = self.model.predict(self.normalise(encodedMoves))
val = np.argmax(act_values[0])
val = val if val < len(self.actionSpace) else len(self.actionSpace) - 1
return self.actionSpace[val]
def resetScore(self):
self.score = 0
@ -209,20 +210,14 @@ class ReinforcementLearning():
def _maxNextQ(self) -> float:
colour = WHITE if self.colour == GREEN else GREEN
encodedMoves = self._encodeMoves(colour, self.board)
encodedMoves = self.encodeMoves(colour, self.board)
if len(encodedMoves) == 0:
return -1
paddedMoves = np.array(np.pad(encodedMoves, (0, self.maxSize - len(encodedMoves)), 'constant', constant_values=(1, 1)))
# paddedMoves = np.reshape(paddedMoves, (32, 8, 8))
# paddedMoves = paddedMoves / np.max(paddedMoved
# paddedMoves = paddedMoves.reshape(32,)
# pm = tf.convert_to_tensor(paddedMoves, dtype=tf.float32)
# pm = tf.reshape(pm, [32])
print(paddedMoves.shape)
nextQValues = self.model.predict_on_batch(self._normalise(paddedMoves))
nextQValues = self.model.predict_on_batch(self.normalise(paddedMoves))
return np.max(nextQValues)
def _encodeMoves(self, colour: int, board: Board) -> list:
def encodeMoves(self, colour: int, board: Board) -> list:
"""
Encodes the moves into a list encoded moves
:param colour: colour of the player
@ -243,10 +238,8 @@ class ReinforcementLearning():
diff = np.nonzero(diff)
return diff
def _normalise(self, data):
def normalise(self, data):
"""
Normalise the data
"""
for i in range(len(data)):
data[i] = data[i] / np.linalg.norm(data[i])
return data
return data / 10000

27
results.py Normal file
View File

@ -0,0 +1,27 @@
import matplotlib.pyplot as plt
from utilities.constants import GREEN, WHITE
# winners = []
with open("winners.txt") as f:
winners = f.readlines()
winners = [int(x.strip()) for x in winners]
fig, ax = plt.subplots()
bar = ax.bar(["Draw", "White", "Green"], [winners.count(0), winners.count(WHITE), winners.count(GREEN)])
ax.set(xlabel='Winner', ylabel='Frequency', ylim=[0, 500])
ax.set_title("Winners")
ax.bar_label(bar)
plt.show()
with open("rewardsA.txt") as f:
totalReward = f.readlines()
plt.plot([i for i in range(len(totalReward))], totalReward)
plt.xlabel("Games")
plt.ylabel("Reward")
plt.show()

View File

@ -63,19 +63,44 @@ class Board:
if piece != 0:
if piece.colour == GREEN:
self.greenLeft -= 1
return
continue
self.whiteLeft -= 1
def getAllMoves(self, colour):
moves = []
possibleMoves = []
possiblePieces = []
pieces = self.getAllPieces(colour)
hasForcedCapture = False
for piece in self.getAllPieces(colour):
for piece in pieces:
validMoves = self.getValidMoves(piece)
for move, skip in validMoves.items():
tempBoard = deepcopy(self)
tempPiece = tempBoard.getPiece(piece.row, piece.col)
newBoard = self._simulateMove(tempPiece, move, tempBoard, skip)
moves.append(newBoard)
# Check if there are forced capture moves for this piece
forcedCaptureMoves = [move for move, skip in validMoves.items() if skip]
if forcedCaptureMoves:
hasForcedCapture = True
possiblePieces.append(piece)
possibleMoves.append({move: skip for move, skip in validMoves.items() if skip})
if hasForcedCapture:
# If there are forced capture moves, consider only those
for i in range(len(possibleMoves)):
for move, skip in possibleMoves[i].items():
tempBoard = deepcopy(self)
tempPiece = tempBoard.getPiece(possiblePieces[i].row, possiblePieces[i].col)
newBoard = self._simulateMove(tempPiece, move, tempBoard, skip)
moves.append(newBoard)
else:
# If no forced capture moves, consider all valid moves
for piece in pieces:
validMoves = self.getValidMoves(piece)
for move, skip in validMoves.items():
tempBoard = deepcopy(self)
tempPiece = tempBoard.getPiece(piece.row, piece.col)
newBoard = self._simulateMove(tempPiece, move, tempBoard, skip)
moves.append(newBoard)
return moves
def _simulateMove(self, piece, move, board, skip):
@ -134,6 +159,7 @@ class Board:
forcedCapture = forced
else:
forcedCapture = forced
return forcedCapture
def scoreOfTheBoard(self):
@ -241,7 +267,7 @@ class Board:
def _decode(self, move):
# Split digits back out
str_code = str(move)
print(str_code)
# print(str_code)
start_row = int(str_code[0])
start_col = int(str_code[1])
end_row = int(str_code[2])