reinforcement-learning #1
@ -4,7 +4,7 @@
 | 
			
		||||
    <content url="file://$MODULE_DIR$">
 | 
			
		||||
      <excludeFolder url="file://$MODULE_DIR$/venv" />
 | 
			
		||||
    </content>
 | 
			
		||||
    <orderEntry type="jdk" jdkName="Python 3.11 (draughts)" jdkType="Python SDK" />
 | 
			
		||||
    <orderEntry type="jdk" jdkName="$USER_HOME$/anaconda3" jdkType="Python SDK" />
 | 
			
		||||
    <orderEntry type="sourceFolder" forTests="false" />
 | 
			
		||||
  </component>
 | 
			
		||||
</module>
 | 
			
		||||
@ -1,4 +1,4 @@
 | 
			
		||||
<?xml version="1.0" encoding="UTF-8"?>
 | 
			
		||||
<project version="4">
 | 
			
		||||
  <component name="ProjectRootManager" version="2" project-jdk-name="Python 3.11 (draughts)" project-jdk-type="Python SDK" />
 | 
			
		||||
  <component name="ProjectRootManager" version="2" project-jdk-name="$USER_HOME$/anaconda3" project-jdk-type="Python SDK" />
 | 
			
		||||
</project>
 | 
			
		||||
							
								
								
									
										6
									
								
								.idea/other.xml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										6
									
								
								.idea/other.xml
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,6 @@
 | 
			
		||||
<?xml version="1.0" encoding="UTF-8"?>
 | 
			
		||||
<project version="4">
 | 
			
		||||
  <component name="PySciProjectComponent">
 | 
			
		||||
    <option name="PY_SCI_VIEW_SUGGESTED" value="true" />
 | 
			
		||||
  </component>
 | 
			
		||||
</project>
 | 
			
		||||
							
								
								
									
										
											BIN
										
									
								
								Report.pdf
									
									
									
									
									
								
							
							
						
						
									
										
											BIN
										
									
								
								Report.pdf
									
									
									
									
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										100
									
								
								changeInRewards-3.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										100
									
								
								changeInRewards-3.txt
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,100 @@
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
							
								
								
									
										100
									
								
								changeInRewards-5.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										100
									
								
								changeInRewards-5.txt
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,100 @@
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
							
								
								
									
										289
									
								
								main.py
									
									
									
									
									
								
							
							
						
						
									
										289
									
								
								main.py
									
									
									
									
									
								
							@ -1,7 +1,10 @@
 | 
			
		||||
import sys
 | 
			
		||||
 | 
			
		||||
import pygame
 | 
			
		||||
import numpy as np
 | 
			
		||||
from matplotlib import pyplot as plt
 | 
			
		||||
 | 
			
		||||
from reinforcementLearning.ReinforcementLearning import ReinforcementLearning
 | 
			
		||||
from utilities.constants import WIDTH, HEIGHT, SQUARE_SIZE, WHITE, GREEN
 | 
			
		||||
from utilities.gameManager import GameManager
 | 
			
		||||
from minimax.minimaxAlgo import MiniMax
 | 
			
		||||
@ -11,21 +14,45 @@ WIN = pygame.display.set_mode((WIDTH, HEIGHT))
 | 
			
		||||
pygame.display.set_caption("Draughts")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def getRowColFromMouse(pos):
 | 
			
		||||
def getRowColFromMouse(pos: dict) -> tuple:
 | 
			
		||||
    """
 | 
			
		||||
    Gets the row and column from the mouse position
 | 
			
		||||
    :param pos: X and Y position of the mouse
 | 
			
		||||
    :return: Row and column
 | 
			
		||||
    """
 | 
			
		||||
    x, y = pos
 | 
			
		||||
    row = y // SQUARE_SIZE
 | 
			
		||||
    col = x // SQUARE_SIZE
 | 
			
		||||
    return row, col
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def drawText(text, font, color, surface, x, y):
 | 
			
		||||
    textobj = font.render(text, 1, color)
 | 
			
		||||
def drawText(text: str, font:  pygame.font.SysFont, colour: tuple, surface: pygame.display, x: float, y: int) -> None:
 | 
			
		||||
    """
 | 
			
		||||
    Draws text on the screen
 | 
			
		||||
    :param text: Text to draw
 | 
			
		||||
    :param font: System font
 | 
			
		||||
    :param colour: Colour of the text
 | 
			
		||||
    :param surface: The display surface
 | 
			
		||||
    :param x: X position of the text
 | 
			
		||||
    :param y: Y position of the text
 | 
			
		||||
    :return None
 | 
			
		||||
    """
 | 
			
		||||
    textobj = font.render(text, 1, colour)
 | 
			
		||||
    textrect = textobj.get_rect()
 | 
			
		||||
    textrect.topleft = (x, y)
 | 
			
		||||
    surface.blit(textobj, textrect)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def drawMultiLineText(surface, text, pos, font, color=pygame.Color('black')):
 | 
			
		||||
def drawMultiLineText(surface: pygame.display, text: str, pos: dict, font: pygame.font.SysFont, colour: tuple = pygame.Color('black')) -> None:
 | 
			
		||||
    """
 | 
			
		||||
    Draws multiline text on the screen
 | 
			
		||||
    :param surface: the display surface
 | 
			
		||||
    :param text: text to draw
 | 
			
		||||
    :param pos: X and Y position of the text
 | 
			
		||||
    :param font: System font
 | 
			
		||||
    :param colour: colour of the text
 | 
			
		||||
    :return None
 | 
			
		||||
    """
 | 
			
		||||
    words = [word.split(' ') for word in text.splitlines()]  # 2D array where each row is a list of words.
 | 
			
		||||
    space = font.size(' ')[0]  # The width of a space.
 | 
			
		||||
    max_width, max_height = surface.get_size()
 | 
			
		||||
@ -33,7 +60,7 @@ def drawMultiLineText(surface, text, pos, font, color=pygame.Color('black')):
 | 
			
		||||
    word_height = None
 | 
			
		||||
    for line in words:
 | 
			
		||||
        for word in line:
 | 
			
		||||
            word_surface = font.render(word, 0, color)
 | 
			
		||||
            word_surface = font.render(word, 0, colour)
 | 
			
		||||
            word_width, word_height = word_surface.get_size()
 | 
			
		||||
            if x + word_width >= max_width:
 | 
			
		||||
                x = pos[0]  # Reset the x.
 | 
			
		||||
@ -44,80 +71,89 @@ def drawMultiLineText(surface, text, pos, font, color=pygame.Color('black')):
 | 
			
		||||
        y += word_height  # Start on new row.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def main():
 | 
			
		||||
def main(difficulty: int = 0) -> None:
 | 
			
		||||
    """
 | 
			
		||||
    Main function, that shows the menu before running the game
 | 
			
		||||
    :param difficulty: difficulty of minimax
 | 
			
		||||
    :return: None
 | 
			
		||||
    """
 | 
			
		||||
    pygame.init()
 | 
			
		||||
    screen = pygame.display.set_mode((WIDTH, HEIGHT))
 | 
			
		||||
    menuClock = pygame.time.Clock()
 | 
			
		||||
    click = False
 | 
			
		||||
    width = screen.get_width()
 | 
			
		||||
    font = pygame.font.SysFont(None, 25)
 | 
			
		||||
    difficulty = 0
 | 
			
		||||
    font = pygame.font.SysFont("", 25)
 | 
			
		||||
 | 
			
		||||
    while True:
 | 
			
		||||
        # menu
 | 
			
		||||
        screen.fill((128, 128, 128))
 | 
			
		||||
        drawText('Main Menu', font, (255, 255, 255), screen, width / 2, 20)
 | 
			
		||||
    if difficulty == 0:
 | 
			
		||||
        while True:
 | 
			
		||||
            # menu
 | 
			
		||||
            screen.fill((128, 128, 128))
 | 
			
		||||
            drawText('Main Menu', font, (255, 255, 255), screen, width / 2, 20)
 | 
			
		||||
 | 
			
		||||
        mx, my = pygame.mouse.get_pos()
 | 
			
		||||
            mx, my = pygame.mouse.get_pos()
 | 
			
		||||
 | 
			
		||||
        easy = pygame.Rect(width / 2 - 50, 100, 200, 50)
 | 
			
		||||
        pygame.draw.rect(screen, (0, 255, 0), easy)
 | 
			
		||||
        drawText("easy", font, (255, 255, 255), screen, width / 2, 100)
 | 
			
		||||
        medium = pygame.Rect(width / 2 - 50, 200, 200, 50)
 | 
			
		||||
        pygame.draw.rect(screen, (255, 125, 0), medium)
 | 
			
		||||
        drawText("medium", font, (255, 255, 255), screen, width / 2, 200)
 | 
			
		||||
        hard = pygame.Rect(width / 2 - 50, 300, 200, 50)
 | 
			
		||||
        pygame.draw.rect(screen, (255, 0, 0), hard)
 | 
			
		||||
        drawText("hard", font, (255, 255, 255), screen, width / 2, 300)
 | 
			
		||||
        rules = pygame.Rect(width / 2 - 50, 400, 200, 50)
 | 
			
		||||
        pygame.draw.rect(screen, (0, 0, 255), rules)
 | 
			
		||||
        drawText("rules", font, (255, 255, 255), screen, width / 2, 400)
 | 
			
		||||
        quitGame = pygame.Rect(width / 2 - 50, 500, 200, 50)
 | 
			
		||||
        pygame.draw.rect(screen, (0, 0, 0), quitGame)
 | 
			
		||||
        drawText("quit", font, (255, 255, 255), screen, width / 2, 500)
 | 
			
		||||
            easy = pygame.Rect(width / 2 - 50, 100, 200, 50)
 | 
			
		||||
            pygame.draw.rect(screen, (0, 255, 0), easy)
 | 
			
		||||
            drawText("easy", font, (255, 255, 255), screen, width / 2, 100)
 | 
			
		||||
            medium = pygame.Rect(width / 2 - 50, 200, 200, 50)
 | 
			
		||||
            pygame.draw.rect(screen, (255, 125, 0), medium)
 | 
			
		||||
            drawText("medium", font, (255, 255, 255), screen, width / 2, 200)
 | 
			
		||||
            hard = pygame.Rect(width / 2 - 50, 300, 200, 50)
 | 
			
		||||
            pygame.draw.rect(screen, (255, 0, 0), hard)
 | 
			
		||||
            drawText("hard", font, (255, 255, 255), screen, width / 2, 300)
 | 
			
		||||
            rules = pygame.Rect(width / 2 - 50, 400, 200, 50)
 | 
			
		||||
            pygame.draw.rect(screen, (0, 0, 255), rules)
 | 
			
		||||
            drawText("rules", font, (255, 255, 255), screen, width / 2, 400)
 | 
			
		||||
            quitGame = pygame.Rect(width / 2 - 50, 500, 200, 50)
 | 
			
		||||
            pygame.draw.rect(screen, (0, 0, 0), quitGame)
 | 
			
		||||
            drawText("quit", font, (255, 255, 255), screen, width / 2, 500)
 | 
			
		||||
 | 
			
		||||
        if easy.collidepoint((mx, my)):
 | 
			
		||||
            if click:
 | 
			
		||||
                difficulty = 1
 | 
			
		||||
                break
 | 
			
		||||
        if medium.collidepoint((mx, my)):
 | 
			
		||||
            if click:
 | 
			
		||||
                difficulty = 3
 | 
			
		||||
                break
 | 
			
		||||
        if hard.collidepoint((mx, my)):
 | 
			
		||||
            if click:
 | 
			
		||||
                difficulty = 5
 | 
			
		||||
                break
 | 
			
		||||
        if rules.collidepoint((mx, my)):
 | 
			
		||||
            if click:
 | 
			
		||||
                rulesGUI()
 | 
			
		||||
                break
 | 
			
		||||
        if quitGame.collidepoint((mx, my)):
 | 
			
		||||
            if click:
 | 
			
		||||
                pygame.quit()
 | 
			
		||||
                sys.exit()
 | 
			
		||||
        click = False
 | 
			
		||||
        for event in pygame.event.get():
 | 
			
		||||
            if event.type == pygame.QUIT:
 | 
			
		||||
                pygame.quit()
 | 
			
		||||
                sys.exit()
 | 
			
		||||
            if event.type == pygame.MOUSEBUTTONDOWN:
 | 
			
		||||
                if event.button == 1:
 | 
			
		||||
                    click = True
 | 
			
		||||
            if easy.collidepoint((mx, my)):
 | 
			
		||||
                if click:
 | 
			
		||||
                    difficulty = 1
 | 
			
		||||
                    break
 | 
			
		||||
            if medium.collidepoint((mx, my)):
 | 
			
		||||
                if click:
 | 
			
		||||
                    difficulty = 3
 | 
			
		||||
                    break
 | 
			
		||||
            if hard.collidepoint((mx, my)):
 | 
			
		||||
                if click:
 | 
			
		||||
                    difficulty = 5
 | 
			
		||||
                    break
 | 
			
		||||
            if rules.collidepoint((mx, my)):
 | 
			
		||||
                if click:
 | 
			
		||||
                    rulesGUI()
 | 
			
		||||
                    break
 | 
			
		||||
            if quitGame.collidepoint((mx, my)):
 | 
			
		||||
                if click:
 | 
			
		||||
                    pygame.quit()
 | 
			
		||||
                    sys.exit()
 | 
			
		||||
            click = False
 | 
			
		||||
            for event in pygame.event.get():
 | 
			
		||||
                if event.type == pygame.QUIT:
 | 
			
		||||
                    pygame.quit()
 | 
			
		||||
                    sys.exit()
 | 
			
		||||
                if event.type == pygame.MOUSEBUTTONDOWN:
 | 
			
		||||
                    if event.button == 1:
 | 
			
		||||
                        click = True
 | 
			
		||||
 | 
			
		||||
        pygame.display.update()
 | 
			
		||||
        menuClock.tick(60)
 | 
			
		||||
    if difficulty != 0:
 | 
			
		||||
        game(difficulty)
 | 
			
		||||
            pygame.display.update()
 | 
			
		||||
            menuClock.tick(60)
 | 
			
		||||
 | 
			
		||||
    game(difficulty)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def rulesGUI():
 | 
			
		||||
def rulesGUI() -> None:
 | 
			
		||||
    """
 | 
			
		||||
    Shows the rules of the game
 | 
			
		||||
    :return: None
 | 
			
		||||
    """
 | 
			
		||||
    screen = pygame.display.set_mode((WIDTH, HEIGHT))
 | 
			
		||||
    menuClock = pygame.time.Clock()
 | 
			
		||||
    click = False
 | 
			
		||||
    width = screen.get_width()
 | 
			
		||||
    titleFont = pygame.font.SysFont(None, 48)
 | 
			
		||||
    font = pygame.font.SysFont(None, 21)
 | 
			
		||||
    titleFont = pygame.font.SysFont("", 48)
 | 
			
		||||
    font = pygame.font.SysFont("", 21)
 | 
			
		||||
    while True:
 | 
			
		||||
        screen.fill((128, 128, 128))
 | 
			
		||||
        drawText("Rules", titleFont, (255, 255, 255), screen, width / 2, 20)
 | 
			
		||||
@ -171,43 +207,116 @@ multi-jump until the next move.""", (50, 50), font)
 | 
			
		||||
        menuClock.tick(60)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def game(difficulty):
 | 
			
		||||
def game(difficulty: int) -> None:
 | 
			
		||||
    """
 | 
			
		||||
    Runs the game with the given difficulty. Used for training and testing the RL algorithm
 | 
			
		||||
    :param difficulty: The difficulty of the minimax algorithm
 | 
			
		||||
    """
 | 
			
		||||
    run = True
 | 
			
		||||
    clock = pygame.time.Clock()
 | 
			
		||||
    gameManager = GameManager(WIN, GREEN)
 | 
			
		||||
    rl = ReinforcementLearning(gameManager.board.getAllMoves(WHITE), gameManager.board, WHITE, gameManager)
 | 
			
		||||
    # model = rl.buildMainModel()
 | 
			
		||||
    rl.model.load_weights("./modelWeights/model_final.h5")
 | 
			
		||||
    mm = MiniMax()
 | 
			
		||||
    totalReward = []
 | 
			
		||||
    winners = []
 | 
			
		||||
    for i in range(50):
 | 
			
		||||
        score = 0
 | 
			
		||||
        for j in range(200):
 | 
			
		||||
            print(j)
 | 
			
		||||
            clock.tick(FPS)
 | 
			
		||||
            reward = 0
 | 
			
		||||
            if gameManager.turn == WHITE:
 | 
			
		||||
                # mm = MiniMax()
 | 
			
		||||
                # value, newBoard = mm.AI(difficulty, WHITE, gameManager)
 | 
			
		||||
                # gameManager.aiMove(newBoard)
 | 
			
		||||
                # reward, newBoard = rl.AITrain(gameManager.board)
 | 
			
		||||
                newBoard = rl.AITest(gameManager.board)
 | 
			
		||||
 | 
			
		||||
    while run:
 | 
			
		||||
        clock.tick(FPS)
 | 
			
		||||
                if newBoard is None:
 | 
			
		||||
                    print("Cannot make move")
 | 
			
		||||
                    continue
 | 
			
		||||
                gameManager.aiMove(newBoard)
 | 
			
		||||
 | 
			
		||||
        if gameManager.turn == WHITE:
 | 
			
		||||
            mm = MiniMax()
 | 
			
		||||
            value, newBoard = mm.AI(gameManager.getBoard(), difficulty, WHITE, gameManager)
 | 
			
		||||
            gameManager.aiMove(newBoard)
 | 
			
		||||
            # time.sleep(0.15)
 | 
			
		||||
            gameManager.update()
 | 
			
		||||
            pygame.display.update()
 | 
			
		||||
 | 
			
		||||
        if gameManager.turn == GREEN:
 | 
			
		||||
            mm = MiniMax()
 | 
			
		||||
            value, newBoard = mm.AI(gameManager.getBoard(), difficulty, GREEN, gameManager)
 | 
			
		||||
            gameManager.aiMove(newBoard)
 | 
			
		||||
            # time.sleep(0.15)
 | 
			
		||||
            if gameManager.turn == GREEN:
 | 
			
		||||
                value, newBoard = mm.AI(difficulty, GREEN, gameManager)
 | 
			
		||||
                gameManager.aiMove(newBoard)
 | 
			
		||||
 | 
			
		||||
        if gameManager.winner() != None:
 | 
			
		||||
            print(gameManager.winner())
 | 
			
		||||
            run = False
 | 
			
		||||
            score += reward
 | 
			
		||||
 | 
			
		||||
        for event in pygame.event.get():
 | 
			
		||||
            if event.type == pygame.QUIT:
 | 
			
		||||
                run = False
 | 
			
		||||
            if event.type == pygame.MOUSEBUTTONDOWN:
 | 
			
		||||
                pos = pygame.mouse.get_pos()
 | 
			
		||||
                row, col = getRowColFromMouse(pos)
 | 
			
		||||
                # if gameManager.turn == GREEN:
 | 
			
		||||
                gameManager.select(row, col)
 | 
			
		||||
            if gameManager.winner() is not None:
 | 
			
		||||
                print("Green" if gameManager.winner() == GREEN else "White", " wins")
 | 
			
		||||
                # with open(f"winners-{difficulty}.txt", "a+") as f:
 | 
			
		||||
                #     f.write(str(gameManager.winner()) + "\n")
 | 
			
		||||
                winners.append(gameManager.winner())
 | 
			
		||||
                break
 | 
			
		||||
 | 
			
		||||
        gameManager.update()
 | 
			
		||||
        pygame.display.update()
 | 
			
		||||
            # for event in pygame.event.get():
 | 
			
		||||
            #     if event.type == pygame.QUIT:
 | 
			
		||||
            #         break
 | 
			
		||||
            #     if event.type == pygame.MOUSEBUTTONDOWN:
 | 
			
		||||
            #         pos = pygame.mouse.get_pos()
 | 
			
		||||
            #         row, col = getRowColFromMouse(pos)
 | 
			
		||||
            #         # if gameManager.turn == GREEN:
 | 
			
		||||
            #         gameManager.select(row, col)
 | 
			
		||||
 | 
			
		||||
            gameManager.update()
 | 
			
		||||
            pygame.display.update()
 | 
			
		||||
 | 
			
		||||
        if gameManager.winner() is None:
 | 
			
		||||
            # with open(f"winners-{difficulty}.txt", "a+") as f:
 | 
			
		||||
            #     f.write(str(0) + "\n")
 | 
			
		||||
            winners.append(0)
 | 
			
		||||
        gameManager.reset()
 | 
			
		||||
        rl.resetScore()
 | 
			
		||||
        print("Game: ", i, " Reward: ", score)
 | 
			
		||||
        # with open(f"rewards-{difficulty}.txt", "a+") as f:
 | 
			
		||||
        #     f.write(str(score) + "\n")
 | 
			
		||||
 | 
			
		||||
        totalReward.append(score)
 | 
			
		||||
        # save model weights every 25 games
 | 
			
		||||
        # if i % 250 == 0 and i != 0:
 | 
			
		||||
        #     rl.model.save("./modelWeights/model_" + str(i) + ".h5")
 | 
			
		||||
    # pygame.quit()
 | 
			
		||||
 | 
			
		||||
    # rl.model.save("./modelWeights/model_final.h5")
 | 
			
		||||
    change_in_rewards = [0]  # Initialize with 0 for the first episode
 | 
			
		||||
    for i in range(1, len(totalReward)):
 | 
			
		||||
        change_in_reward = totalReward[i] - totalReward[i - 1]
 | 
			
		||||
        change_in_rewards.append(change_in_reward)
 | 
			
		||||
 | 
			
		||||
main()
 | 
			
		||||
    # with open(f"changeInRewards-{difficulty}.txt", "a+") as f:
 | 
			
		||||
    #     for i in change_in_rewards:
 | 
			
		||||
    #         f.write(str(i) + "\n")
 | 
			
		||||
 | 
			
		||||
    # episodes = list(range(1, len(totalReward) + 1))
 | 
			
		||||
    #
 | 
			
		||||
    # plt.plot(episodes, change_in_rewards)
 | 
			
		||||
    # plt.xlabel('Training Games')
 | 
			
		||||
    # plt.ylabel('Change in Game Reward')
 | 
			
		||||
    # plt.title('Change in Game Reward vs. Training Games')
 | 
			
		||||
    # plt.grid(True)
 | 
			
		||||
    # plt.show()
 | 
			
		||||
    #
 | 
			
		||||
    # plt.plot([i for i in range(len(totalReward))], totalReward)
 | 
			
		||||
    # plt.xlabel("Games")
 | 
			
		||||
    # plt.ylabel("Reward")
 | 
			
		||||
    # plt.show()
 | 
			
		||||
 | 
			
		||||
    fig, ax = plt.subplots()
 | 
			
		||||
    bar = ax.bar(["Draw", "White", "Green"], [winners.count(0), winners.count(WHITE), winners.count(GREEN)])
 | 
			
		||||
    ax.set(xlabel='Winner', ylabel='Frequency', ylim=[0, 500])
 | 
			
		||||
    ax.set_title(f"Winners for difficulty — {difficulty}")
 | 
			
		||||
    ax.bar_label(bar)
 | 
			
		||||
    plt.show()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# difficulties = [3, 5, 7, 9]
 | 
			
		||||
#
 | 
			
		||||
# for diff in difficulties:
 | 
			
		||||
#     main(diff)
 | 
			
		||||
main(3)
 | 
			
		||||
 | 
			
		||||
@ -1,56 +1,46 @@
 | 
			
		||||
import random
 | 
			
		||||
from copy import deepcopy
 | 
			
		||||
from math import inf
 | 
			
		||||
 | 
			
		||||
from utilities.constants import GREEN, WHITE
 | 
			
		||||
from utilities.gameManager import GameManager
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class MiniMax():
 | 
			
		||||
class MiniMax:
 | 
			
		||||
 | 
			
		||||
    def AI(self, board, depth, maxPlayer, gameManager):
 | 
			
		||||
        if depth == 0 or board.winner() is not None:
 | 
			
		||||
            return board.scoreOfTheBoard(), board
 | 
			
		||||
    def AI(self, depth: int, maxPlayer: int, gameManager: GameManager) -> tuple:
 | 
			
		||||
        """
 | 
			
		||||
        The minimax algorithm
 | 
			
		||||
        :param depth: How deep the algorithm should go
 | 
			
		||||
        :param maxPlayer: The current player
 | 
			
		||||
        :param gameManager: The game manager
 | 
			
		||||
        :return: the best evaluation and board
 | 
			
		||||
        """
 | 
			
		||||
        if depth == 0 or gameManager.board.winner() is not None:
 | 
			
		||||
            return gameManager.board.scoreOfTheBoard(), gameManager.board
 | 
			
		||||
 | 
			
		||||
        if maxPlayer:
 | 
			
		||||
        if type(maxPlayer) == int:
 | 
			
		||||
            maxEval = -inf
 | 
			
		||||
            bestMove = None
 | 
			
		||||
            for move in self.getAllMoves(board, maxPlayer):
 | 
			
		||||
                evaluation = self.AI(move, depth - 1, False, gameManager)[0]
 | 
			
		||||
            for move in gameManager.board.getAllMoves(maxPlayer):
 | 
			
		||||
                evaluation = self.AI(depth - 1, False, gameManager)[0]
 | 
			
		||||
                maxEval = max(maxEval, evaluation)
 | 
			
		||||
                if maxEval > evaluation:
 | 
			
		||||
                    bestMove = move
 | 
			
		||||
                if maxEval == evaluation:
 | 
			
		||||
                    # bestMove = move
 | 
			
		||||
                    bestMove = bestMove if random.choice([True, False]) else move
 | 
			
		||||
            return maxEval, bestMove
 | 
			
		||||
        else:
 | 
			
		||||
            minEval = inf
 | 
			
		||||
            bestMove = None
 | 
			
		||||
            colour = WHITE if gameManager.turn == GREEN else GREEN
 | 
			
		||||
            for move in self.getAllMoves(board, colour):
 | 
			
		||||
                evaluation = self.AI(move, depth - 1, True, gameManager)[0]
 | 
			
		||||
            for move in gameManager.board.getAllMoves(colour):
 | 
			
		||||
                evaluation = self.AI(depth - 1, True, gameManager)[0]
 | 
			
		||||
                minEval = min(minEval, evaluation)
 | 
			
		||||
                if minEval < evaluation:
 | 
			
		||||
                    bestMove = move
 | 
			
		||||
                if minEval == evaluation:
 | 
			
		||||
                    # bestMove = move
 | 
			
		||||
                    bestMove = bestMove if random.choice([True, False]) else move
 | 
			
		||||
 | 
			
		||||
            return minEval, bestMove
 | 
			
		||||
 | 
			
		||||
    def _simulateMove(self, piece, move, board, skip):
 | 
			
		||||
        board.move(piece, move[0], move[1])
 | 
			
		||||
        if skip:
 | 
			
		||||
            board.remove(skip)
 | 
			
		||||
 | 
			
		||||
        return board
 | 
			
		||||
 | 
			
		||||
    def getAllMoves(self, board, colour):
 | 
			
		||||
        moves = []
 | 
			
		||||
 | 
			
		||||
        for piece in board.getAllPieces(colour):
 | 
			
		||||
            validMoves = board.getValidMoves(piece)
 | 
			
		||||
            for move, skip in validMoves.items():
 | 
			
		||||
                tempBoard = deepcopy(board)
 | 
			
		||||
                tempPiece = tempBoard.getPiece(piece.row, piece.col)
 | 
			
		||||
                newBoard = self._simulateMove(tempPiece, move, tempBoard, skip)
 | 
			
		||||
                moves.append(newBoard)
 | 
			
		||||
        return moves
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										
											BIN
										
									
								
								modelWeights/model_250.h5
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								modelWeights/model_250.h5
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								modelWeights/model_final.h5
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								modelWeights/model_final.h5
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							@ -1,96 +1,280 @@
 | 
			
		||||
import random
 | 
			
		||||
from collections import deque
 | 
			
		||||
from typing import Any
 | 
			
		||||
from copy import deepcopy
 | 
			
		||||
 | 
			
		||||
import numpy as np
 | 
			
		||||
import tensorflow as tf
 | 
			
		||||
from tensorflow.python.keras import Sequential, regularizers
 | 
			
		||||
from tensorflow.python.keras.layers import Dense
 | 
			
		||||
from keras.engine.input_layer import InputLayer
 | 
			
		||||
from keras.layers import BatchNormalization
 | 
			
		||||
from tensorflow.python.keras import Sequential, regularizers, Input
 | 
			
		||||
from tensorflow.python.keras.layers import Dense, Lambda, Dropout
 | 
			
		||||
from tensorflow.python.keras.optimizer_v2.adam import Adam
 | 
			
		||||
 | 
			
		||||
from minimax.minimaxAlgo import MiniMax
 | 
			
		||||
from utilities import Board
 | 
			
		||||
from utilities.constants import WHITE, GREEN
 | 
			
		||||
from utilities.gameManager import GameManager
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ReinforcementLearning():
 | 
			
		||||
 | 
			
		||||
    def __init__(self, action_space, state_space, env):
 | 
			
		||||
        self.action_space = action_space
 | 
			
		||||
        self.state_space = state_space
 | 
			
		||||
        self.env = env
 | 
			
		||||
    def __init__(self, actionSpace: list, board: Board, colour: int, gameManager: GameManager) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        Constructor for the ReinforcementLearning class
 | 
			
		||||
        :param actionSpace: The number of possible actions
 | 
			
		||||
        :param board: The game board
 | 
			
		||||
        """
 | 
			
		||||
        self.gameManager = gameManager
 | 
			
		||||
        self.actionSpace = actionSpace
 | 
			
		||||
        self.board = board
 | 
			
		||||
        self.state = self.board.board
 | 
			
		||||
        self.colour = colour
 | 
			
		||||
        self.score = 0
 | 
			
		||||
        self.epsilon = 1
 | 
			
		||||
        self.gamma = .95
 | 
			
		||||
        self.batch_size = 64
 | 
			
		||||
        self.epsilon_min = .01
 | 
			
		||||
        self.epsilon_decay = .995
 | 
			
		||||
        self.learning_rate = 0.001
 | 
			
		||||
        self.memory = deque(maxlen=100000)
 | 
			
		||||
        self.model = self._buildModel()
 | 
			
		||||
        self.batchSize = 512
 | 
			
		||||
        self.maxSize = 32
 | 
			
		||||
        self.epsilonMin = .01
 | 
			
		||||
        self.epsilonDecay = .995
 | 
			
		||||
        self.learningRate = 0.0001
 | 
			
		||||
        self.memory = deque(maxlen=10000000)
 | 
			
		||||
        self.model = self.buildMainModel()
 | 
			
		||||
        print(self.model.summary())
 | 
			
		||||
 | 
			
		||||
    def AI(self, episode):
 | 
			
		||||
        loss = []
 | 
			
		||||
    def AITrain(self, board: Board) -> tuple:
 | 
			
		||||
        """
 | 
			
		||||
        Learns to play the draughts game
 | 
			
		||||
        :return: The loss
 | 
			
		||||
        """
 | 
			
		||||
        self.board = board
 | 
			
		||||
        self.state = self._convertState(self.board.board)
 | 
			
		||||
        self.actionSpace = self.encodeMoves(self.colour, self.board)
 | 
			
		||||
        if len(self.actionSpace) == 0:
 | 
			
		||||
            return self.score, None
 | 
			
		||||
 | 
			
		||||
        max_steps = 1000
 | 
			
		||||
        action = self._act()
 | 
			
		||||
        reward, nextState, done = self.board.step(action, self.colour)
 | 
			
		||||
        self.score += reward
 | 
			
		||||
        self.state = self._convertState(nextState.board)
 | 
			
		||||
        self._remember(deepcopy(self.board), action, reward, self.state, done)
 | 
			
		||||
        self._replay()
 | 
			
		||||
 | 
			
		||||
        for e in range(episode):
 | 
			
		||||
            state = self.env.reset()
 | 
			
		||||
            state = np.reshape(state, (1, self.state_space))
 | 
			
		||||
            score = 0
 | 
			
		||||
            for i in range(max_steps):
 | 
			
		||||
                action = self.act(state)
 | 
			
		||||
                reward, next_state, done = self.env.step(action)
 | 
			
		||||
                score += reward
 | 
			
		||||
                next_state = np.reshape(next_state, (1, self.state_space))
 | 
			
		||||
                self.remember(state, action, reward, next_state, done)
 | 
			
		||||
                state = next_state
 | 
			
		||||
                self.replay()
 | 
			
		||||
                if done:
 | 
			
		||||
                    print("episode: {}/{}, score: {}".format(e, episode, score))
 | 
			
		||||
                    break
 | 
			
		||||
            loss.append(score)
 | 
			
		||||
        return self.score, nextState
 | 
			
		||||
 | 
			
		||||
    def _buildModel(self):
 | 
			
		||||
    def AITest(self, board: Board) -> Board:
 | 
			
		||||
        """
 | 
			
		||||
        Runs the AI
 | 
			
		||||
        :param board: The board
 | 
			
		||||
        :return: The new board
 | 
			
		||||
        """
 | 
			
		||||
        actionSpace = self.encodeMoves(WHITE, board)
 | 
			
		||||
        if len(actionSpace) == 0:
 | 
			
		||||
            print("Cannot make move")
 | 
			
		||||
            return None
 | 
			
		||||
        totalMoves = len(actionSpace)
 | 
			
		||||
        # moves = np.squeeze(moves)
 | 
			
		||||
        moves = np.pad(actionSpace, (0, self.maxSize - totalMoves), 'constant', constant_values=(1, 1))
 | 
			
		||||
        act_values = self.model.predict(self.normalise(moves))
 | 
			
		||||
        val = np.argmax(act_values[0])
 | 
			
		||||
        val = val if val < totalMoves else totalMoves - 1
 | 
			
		||||
        reward, newBoard, done = board.step(actionSpace[val], WHITE)
 | 
			
		||||
        return newBoard
 | 
			
		||||
 | 
			
		||||
    def buildMainModel(self) -> Sequential:
 | 
			
		||||
        """
 | 
			
		||||
        Build the model for the AI
 | 
			
		||||
        :return: The model
 | 
			
		||||
        """
 | 
			
		||||
        # Board model
 | 
			
		||||
        board_model = Sequential()
 | 
			
		||||
        modelLayers = [
 | 
			
		||||
            Lambda(lambda x: tf.reshape(x, [-1, 32])),
 | 
			
		||||
            Dense(512, activation='relu', kernel_regularizer=regularizers.l2(0.01)),
 | 
			
		||||
            Dropout(0.2),
 | 
			
		||||
            Dense(256, activation='relu', kernel_regularizer=regularizers.l2(0.01)),
 | 
			
		||||
            Dropout(0.2),
 | 
			
		||||
            Dense(128, activation='relu', kernel_regularizer=regularizers.l2(0.01)),
 | 
			
		||||
            Dropout(0.2),
 | 
			
		||||
            Dense(64, activation='relu', kernel_regularizer=regularizers.l2(0.01)),
 | 
			
		||||
            Dropout(0.2),
 | 
			
		||||
            Dense(32, activation='relu', kernel_regularizer=regularizers.l2(0.01)),
 | 
			
		||||
            Dropout(0.2),
 | 
			
		||||
            Dense(16, activation='linear', kernel_regularizer=regularizers.l2(0.01))
 | 
			
		||||
        ]
 | 
			
		||||
        boardModel = Sequential(modelLayers)
 | 
			
		||||
 | 
			
		||||
        # input dimensions is 32 board position values
 | 
			
		||||
        board_model.add(Dense(64, activation='relu', input_dim=32))
 | 
			
		||||
        # boardModel.add(BatchNormalization())
 | 
			
		||||
        boardModel.compile(optimizer=Adam(learning_rate=self.learningRate), loss='mean_squared_error')
 | 
			
		||||
        boardModel.build(input_shape=(None, None))
 | 
			
		||||
 | 
			
		||||
        # use regularizers, to prevent fitting noisy labels
 | 
			
		||||
        board_model.add(Dense(32, activation='relu', kernel_regularizer=regularizers.l2(0.01)))
 | 
			
		||||
        board_model.add(Dense(16, activation='relu', kernel_regularizer=regularizers.l2(0.01)))  # 16
 | 
			
		||||
        board_model.add(Dense(8, activation='relu', kernel_regularizer=regularizers.l2(0.01)))  # 8
 | 
			
		||||
        return boardModel
 | 
			
		||||
 | 
			
		||||
        # output isn't squashed, because it might lose information
 | 
			
		||||
        board_model.add(Dense(1, activation='linear', kernel_regularizer=regularizers.l2(0.01)))
 | 
			
		||||
        board_model.compile(optimizer='nadam', loss='binary_crossentropy')
 | 
			
		||||
 | 
			
		||||
        return board_model
 | 
			
		||||
 | 
			
		||||
    def remember(self, state, action, reward, next_state, done):
 | 
			
		||||
        self.memory.append((state, action, reward, next_state, done))
 | 
			
		||||
 | 
			
		||||
    def replay(self):
 | 
			
		||||
        if len(self.memory) < self.batch_size:
 | 
			
		||||
    def _replay(self) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        trains the model
 | 
			
		||||
        :return: None
 | 
			
		||||
        """
 | 
			
		||||
        if len(self.memory) < self.batchSize:
 | 
			
		||||
            # Not enough data to replay and test the model
 | 
			
		||||
            return
 | 
			
		||||
 | 
			
		||||
        minibatch = random.sample(self.memory, self.batch_size)
 | 
			
		||||
        states = np.array([i[0] for i in minibatch])
 | 
			
		||||
        actions = np.array([i[1] for i in minibatch])
 | 
			
		||||
        rewards = np.array([i[2] for i in minibatch])
 | 
			
		||||
        next_states = np.array([i[3] for i in minibatch])
 | 
			
		||||
        dones = np.array([i[4] for i in minibatch])
 | 
			
		||||
        # Get a random sample from the memory
 | 
			
		||||
        minibatch = random.sample(self.memory, int(self.maxSize))
 | 
			
		||||
 | 
			
		||||
        states = np.squeeze(states)
 | 
			
		||||
        next_states = np.squeeze(next_states)
 | 
			
		||||
        # Extract states, rewards, dones
 | 
			
		||||
        states = [m[0] for m in minibatch]
 | 
			
		||||
        rewards = [m[2] for m in minibatch]
 | 
			
		||||
        dones = [m[4] for m in minibatch]
 | 
			
		||||
 | 
			
		||||
        targets = rewards + self.gamma * (np.amax(self.model.predict_on_batch(next_states), axis=1)) * (1 - dones)
 | 
			
		||||
        targets_full = self.model.predict_on_batch(states)
 | 
			
		||||
        # Encoded moves
 | 
			
		||||
        encodedMoves = []
 | 
			
		||||
        for state in states:
 | 
			
		||||
            encodedMoves.append(self.encodeMoves(self.colour, state))
 | 
			
		||||
 | 
			
		||||
        ind = np.array([i for i in range(self.batch_size)])
 | 
			
		||||
        targets_full[[ind], [actions]] = targets
 | 
			
		||||
        # Calculate targets
 | 
			
		||||
        targets = []
 | 
			
		||||
        for i, moves in enumerate(encodedMoves):
 | 
			
		||||
            if dones[i]:
 | 
			
		||||
                target = rewards[i]
 | 
			
		||||
            else:
 | 
			
		||||
                target = rewards[i] + self.gamma * self._maxNextQ()
 | 
			
		||||
 | 
			
		||||
        self.model.fit(states, targets_full, epochs=1, verbose=0)
 | 
			
		||||
        if self.epsilon > self.epsilon_min:
 | 
			
		||||
            self.epsilon *= self.epsilon_decay
 | 
			
		||||
            targets.append(target)
 | 
			
		||||
 | 
			
		||||
    def act(self, state):
 | 
			
		||||
        encodedMoves = np.array([np.pad(m, (0, self.maxSize - len(m)), 'constant', constant_values=(1, 1))
 | 
			
		||||
                                 for m in encodedMoves])
 | 
			
		||||
        targets = np.array(targets)
 | 
			
		||||
        self.model.fit(self.normalise(encodedMoves), self.normalise(targets), epochs=20)
 | 
			
		||||
        if self.epsilon > self.epsilonMin:
 | 
			
		||||
            self.epsilon *= self.epsilonDecay
 | 
			
		||||
 | 
			
		||||
    def _remember(self, state: np.array, action: int, reward: float, nextState: np.array, done: bool) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        Remembers what it has learnt
 | 
			
		||||
        :param state: The current state
 | 
			
		||||
        :param action: The action taken
 | 
			
		||||
        :param reward: The reward for the action
 | 
			
		||||
        :param nextState: The next state
 | 
			
		||||
        :param done: Whether the game is finished
 | 
			
		||||
        :return: None
 | 
			
		||||
        """
 | 
			
		||||
        self.memory.append((state, action, reward, nextState, done))
 | 
			
		||||
 | 
			
		||||
    def _act(self) -> Any:
 | 
			
		||||
        """
 | 
			
		||||
        Chooses an action based on the available moves
 | 
			
		||||
        :return: The action
 | 
			
		||||
        """
 | 
			
		||||
        if np.random.rand() <= self.epsilon:
 | 
			
		||||
            return random.randrange(self.action_space)
 | 
			
		||||
        act_values = self.model.predict(state)
 | 
			
		||||
        return np.argmax(act_values[0])
 | 
			
		||||
            # choose a random action from the action spaces list
 | 
			
		||||
            mm = MiniMax()
 | 
			
		||||
            value, newBoard = mm.AI(3, self.colour, self.gameManager)
 | 
			
		||||
            if newBoard is None:
 | 
			
		||||
                return random.choice(self.actionSpace)
 | 
			
		||||
            where = self._boardDiff(self.board, newBoard)
 | 
			
		||||
            return self._encode(where[0]+1, where[1]+1)
 | 
			
		||||
 | 
			
		||||
        if len(self.actionSpace) == 1:
 | 
			
		||||
            return self.actionSpace[0]
 | 
			
		||||
        encodedMoves = np.squeeze(self.actionSpace)
 | 
			
		||||
        encodedMoves = np.pad(encodedMoves, (0, self.maxSize - len(encodedMoves)), 'constant', constant_values=(1, 1))
 | 
			
		||||
        actValues = self.model.predict(self.normalise(encodedMoves))
 | 
			
		||||
        val = np.argmax(actValues[0])
 | 
			
		||||
        val = val if val < len(self.actionSpace) else len(self.actionSpace) - 1
 | 
			
		||||
        return self.actionSpace[val]
 | 
			
		||||
 | 
			
		||||
    def resetScore(self) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        Resets the score
 | 
			
		||||
        :return: None
 | 
			
		||||
        """
 | 
			
		||||
        self.score = 0
 | 
			
		||||
 | 
			
		||||
    def _convertState(self, board: list) -> list:
 | 
			
		||||
        """
 | 
			
		||||
        Converts the board into a 2D list of numbers
 | 
			
		||||
        :param board: 2D list of pieces
 | 
			
		||||
        :return: new 2D list of numbers
 | 
			
		||||
        """
 | 
			
		||||
        num_board = []
 | 
			
		||||
 | 
			
		||||
        for row in board:
 | 
			
		||||
            num_row = []
 | 
			
		||||
            for piece in row:
 | 
			
		||||
                if piece == 0:
 | 
			
		||||
                    num_row.append(0)
 | 
			
		||||
                    continue
 | 
			
		||||
 | 
			
		||||
                if piece.colour == 1:
 | 
			
		||||
                    num_row.append(1)
 | 
			
		||||
                    continue
 | 
			
		||||
 | 
			
		||||
                num_row.append(2)
 | 
			
		||||
 | 
			
		||||
            num_board.append(num_row)
 | 
			
		||||
 | 
			
		||||
        return num_board
 | 
			
		||||
 | 
			
		||||
    def _encode(self, start: tuple, end: tuple) -> int:
 | 
			
		||||
        """
 | 
			
		||||
        Encodes the move into an integer
 | 
			
		||||
        :param start: Tuple of start position
 | 
			
		||||
        :param end: Tuple of end position
 | 
			
		||||
        :return: Encoded move
 | 
			
		||||
        """
 | 
			
		||||
        start_row = start[0]
 | 
			
		||||
        start_col = end[0]
 | 
			
		||||
 | 
			
		||||
        end_row = start[-1]
 | 
			
		||||
        end_col = end[-1]
 | 
			
		||||
 | 
			
		||||
        # Concatenate into integer
 | 
			
		||||
        return int(str(start_row) + str(start_col) + str(end_row) + str(end_col))
 | 
			
		||||
 | 
			
		||||
    def _maxNextQ(self) -> float:
 | 
			
		||||
        """
 | 
			
		||||
        Calculates the max Q value for the next state
 | 
			
		||||
        :return: the max Q value
 | 
			
		||||
        """
 | 
			
		||||
        colour = WHITE if self.colour == GREEN else GREEN
 | 
			
		||||
        encodedMoves = self.encodeMoves(colour, self.board)
 | 
			
		||||
        if len(encodedMoves) == 0:
 | 
			
		||||
            return -1
 | 
			
		||||
        paddedMoves = np.array(np.pad(encodedMoves, (0, self.maxSize - len(encodedMoves)), 'constant', constant_values=(1, 1)))
 | 
			
		||||
        nextQValues = self.model.predict_on_batch(self.normalise(paddedMoves))
 | 
			
		||||
        return np.max(nextQValues)
 | 
			
		||||
 | 
			
		||||
    def encodeMoves(self, colour: int, board: Board) -> list:
 | 
			
		||||
        """
 | 
			
		||||
        Encodes the moves into a list encoded moves
 | 
			
		||||
        :param colour: Colour of the player
 | 
			
		||||
        :param board: The board
 | 
			
		||||
        :return: list Of encoded moves
 | 
			
		||||
        """
 | 
			
		||||
        encodedMoves = []
 | 
			
		||||
        moves = board.getAllMoves(colour)
 | 
			
		||||
        for move in moves:
 | 
			
		||||
            where = self._boardDiff(board, move)
 | 
			
		||||
            encodedMoves.append(self._encode(where[0]+1, where[1]+1))
 | 
			
		||||
        return encodedMoves
 | 
			
		||||
 | 
			
		||||
    def _boardDiff(self, board: Board, move: Board) -> np.array:
 | 
			
		||||
        """
 | 
			
		||||
        Finds the difference between the two boards
 | 
			
		||||
        :param board: The current board
 | 
			
		||||
        :param move:  The new board
 | 
			
		||||
        :return: the difference between the two boards
 | 
			
		||||
        """
 | 
			
		||||
        cnvState = np.array(self._convertState(board.board))
 | 
			
		||||
        cnvMove = np.array(self._convertState(move.board))
 | 
			
		||||
        diff = np.subtract(cnvMove, cnvState)
 | 
			
		||||
        diff = np.nonzero(diff)
 | 
			
		||||
        return diff
 | 
			
		||||
 | 
			
		||||
    def normalise(self, data: np.array) -> np.array:
 | 
			
		||||
        """
 | 
			
		||||
        Normalise the data
 | 
			
		||||
        :param data: the data to normalise
 | 
			
		||||
        :return: normalised data
 | 
			
		||||
        """
 | 
			
		||||
        return data / 10000
 | 
			
		||||
							
								
								
									
										80
									
								
								results.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										80
									
								
								results.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,80 @@
 | 
			
		||||
import matplotlib.pyplot as plt
 | 
			
		||||
import numpy as np
 | 
			
		||||
from utilities.constants import GREEN, WHITE
 | 
			
		||||
 | 
			
		||||
# winners = []
 | 
			
		||||
with open("winners-5.txt", "r") as f:
 | 
			
		||||
    winners = f.readlines()
 | 
			
		||||
 | 
			
		||||
winners = [int(x.strip()) for x in winners]
 | 
			
		||||
 | 
			
		||||
# lavg = []
 | 
			
		||||
# for i in range(0, len(winners), 25):
 | 
			
		||||
#     lavg.append(winners[i:i+25].count(2) / 25)
 | 
			
		||||
#
 | 
			
		||||
# x = np.arange(0, len(lavg))
 | 
			
		||||
# y = np.array(lavg) * 100
 | 
			
		||||
#
 | 
			
		||||
# a, b = np.polyfit(x, y, 1)
 | 
			
		||||
#
 | 
			
		||||
# fig, ax = plt.subplots(figsize=(10, 5))
 | 
			
		||||
# ax.plot(y)
 | 
			
		||||
# ax.set_xticks(np.arange(0, len(lavg), 2))
 | 
			
		||||
# ax.minorticks_on()
 | 
			
		||||
# ax.plot(x, a*x+b, color='red', linestyle='--', linewidth=2)
 | 
			
		||||
# ax.set_ylim([0, 100])
 | 
			
		||||
# ax.set_title("Winners Average")
 | 
			
		||||
# ax.grid(which='major', linestyle='-', linewidth='0.5', color='black')
 | 
			
		||||
# ax.grid(which='minor', linestyle=':', linewidth='0.5')
 | 
			
		||||
# ax.set_xlabel("Average Set")
 | 
			
		||||
# ax.set_ylabel("Percentage of Wins")
 | 
			
		||||
# ax.tick_params(which="minor", bottom=False, left=False)
 | 
			
		||||
# plt.show()
 | 
			
		||||
 | 
			
		||||
fig, ax = plt.subplots()
 | 
			
		||||
bar = ax.bar(["Draw", "White", "Green"], [winners.count(0), winners.count(WHITE), winners.count(GREEN)])
 | 
			
		||||
ax.set(xlabel='Winner', ylabel='Frequency', ylim=[0, 100])
 | 
			
		||||
ax.set_title("Winners at Depth 5")
 | 
			
		||||
ax.grid(which='major', linestyle='-', linewidth='0.5', color='grey', axis='y')
 | 
			
		||||
ax.bar_label(bar)
 | 
			
		||||
plt.show()
 | 
			
		||||
 | 
			
		||||
# with open("trainedRewards.txt", "r") as f:
 | 
			
		||||
#     totalReward = f.readlines()
 | 
			
		||||
#
 | 
			
		||||
# totalReward = [float(x.strip()) for x in totalReward]
 | 
			
		||||
# filteredReward = list(filter(lambda x: x > -1500, totalReward))
 | 
			
		||||
 | 
			
		||||
# change_in_rewards = [0]  # Initialize with 0 for the first episode
 | 
			
		||||
# for i in range(1, len(totalReward)):
 | 
			
		||||
#     change_in_reward = totalReward[i] - totalReward[i - 1]
 | 
			
		||||
#     change_in_rewards.append(change_in_reward)
 | 
			
		||||
#
 | 
			
		||||
# games = list(range(1, len(totalReward) + 1))
 | 
			
		||||
 | 
			
		||||
# plt.plot(games, change_in_rewards)
 | 
			
		||||
# plt.xlabel('Training Games')
 | 
			
		||||
# plt.ylabel('Change in Game Reward')
 | 
			
		||||
# plt.title('Change in Game Reward vs. Training Games')
 | 
			
		||||
# plt.grid(True)
 | 
			
		||||
# plt.show()
 | 
			
		||||
# major_ticks = np.arange(0, 101, 20)
 | 
			
		||||
# minor_ticks = np.arange(0, 101, 5)
 | 
			
		||||
#
 | 
			
		||||
# plt.plot([i for i in range(len(totalReward))], totalReward)
 | 
			
		||||
# plt.title("Rewards to Games")
 | 
			
		||||
# plt.xlabel("Games")
 | 
			
		||||
# plt.ylabel("Reward")
 | 
			
		||||
# plt.xticks(major_ticks)
 | 
			
		||||
# plt.xticks(minor_ticks, minor=True)
 | 
			
		||||
# plt.yticks(major_ticks)
 | 
			
		||||
# plt.yticks(minor_ticks, minor=True)
 | 
			
		||||
# plt.grid(which='both')
 | 
			
		||||
# plt.show()
 | 
			
		||||
#
 | 
			
		||||
# plt.plot([i for i in range(len(filteredReward))], filteredReward)
 | 
			
		||||
# plt.title("Filtered Rewards to Games")
 | 
			
		||||
# plt.xlabel("Games")
 | 
			
		||||
# plt.ylabel("Reward")
 | 
			
		||||
# plt.grid(which='both')
 | 
			
		||||
# plt.show()
 | 
			
		||||
							
								
								
									
										56
									
								
								rewards-5.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										56
									
								
								rewards-5.txt
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,56 @@
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
							
								
								
									
										
											BIN
										
									
								
								rewardsA.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								rewardsA.png
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| 
		 After Width: | Height: | Size: 148 KiB  | 
							
								
								
									
										500
									
								
								trainedRewards.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										500
									
								
								trainedRewards.txt
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,500 @@
 | 
			
		||||
180.5
 | 
			
		||||
115.19999999999999
 | 
			
		||||
-155.39999999999998
 | 
			
		||||
-5169.4000000000015
 | 
			
		||||
100.0
 | 
			
		||||
-3354.2999999999956
 | 
			
		||||
123.79999999999998
 | 
			
		||||
-1738.0
 | 
			
		||||
261.40000000000015
 | 
			
		||||
120.89999999999999
 | 
			
		||||
147.80000000000004
 | 
			
		||||
108.0
 | 
			
		||||
113.50000000000001
 | 
			
		||||
110.5000000000002
 | 
			
		||||
-1048.3000000000006
 | 
			
		||||
75.8
 | 
			
		||||
232.70000000000016
 | 
			
		||||
89.10000000000001
 | 
			
		||||
279.9000000000002
 | 
			
		||||
165.40000000000003
 | 
			
		||||
85.4
 | 
			
		||||
34.20000000000016
 | 
			
		||||
266.20000000000016
 | 
			
		||||
101.69999999999999
 | 
			
		||||
283.0
 | 
			
		||||
-264.5
 | 
			
		||||
225.0
 | 
			
		||||
328.0
 | 
			
		||||
215.5
 | 
			
		||||
150.0
 | 
			
		||||
-217.5
 | 
			
		||||
-2920.0
 | 
			
		||||
82.5
 | 
			
		||||
-208.5
 | 
			
		||||
150.5
 | 
			
		||||
196.5
 | 
			
		||||
223.0
 | 
			
		||||
265.5
 | 
			
		||||
-282.5
 | 
			
		||||
175.5
 | 
			
		||||
206.5
 | 
			
		||||
221.5
 | 
			
		||||
127.5
 | 
			
		||||
-6337.5
 | 
			
		||||
147.5
 | 
			
		||||
231.5
 | 
			
		||||
137.5
 | 
			
		||||
-180.5
 | 
			
		||||
108.0
 | 
			
		||||
-339.5
 | 
			
		||||
190.0
 | 
			
		||||
-69.0
 | 
			
		||||
52.5
 | 
			
		||||
58.0
 | 
			
		||||
-5575.0
 | 
			
		||||
-159.5
 | 
			
		||||
197.5
 | 
			
		||||
177.5
 | 
			
		||||
-5547.5
 | 
			
		||||
-65.5
 | 
			
		||||
136.5
 | 
			
		||||
292.5
 | 
			
		||||
-169.5
 | 
			
		||||
185.0
 | 
			
		||||
115.5
 | 
			
		||||
198.0
 | 
			
		||||
30.0
 | 
			
		||||
162.5
 | 
			
		||||
95.5
 | 
			
		||||
170.0
 | 
			
		||||
113.0
 | 
			
		||||
-1405.0
 | 
			
		||||
-27.0
 | 
			
		||||
-4832.199999999999
 | 
			
		||||
147.5
 | 
			
		||||
228.0
 | 
			
		||||
59.0
 | 
			
		||||
262.5
 | 
			
		||||
-220.0
 | 
			
		||||
150.5
 | 
			
		||||
177.5
 | 
			
		||||
140.0
 | 
			
		||||
123.0
 | 
			
		||||
119.0
 | 
			
		||||
137.5
 | 
			
		||||
134.0
 | 
			
		||||
175.5
 | 
			
		||||
-5598.5
 | 
			
		||||
46.5
 | 
			
		||||
135.0
 | 
			
		||||
205.0
 | 
			
		||||
186.5
 | 
			
		||||
177.5
 | 
			
		||||
120.1
 | 
			
		||||
332.5
 | 
			
		||||
162.5
 | 
			
		||||
122.5
 | 
			
		||||
262.5
 | 
			
		||||
-70.0
 | 
			
		||||
159.0
 | 
			
		||||
138.0
 | 
			
		||||
240.5
 | 
			
		||||
215.0
 | 
			
		||||
147.5
 | 
			
		||||
-118.0
 | 
			
		||||
260.5
 | 
			
		||||
199.0
 | 
			
		||||
130.0
 | 
			
		||||
265.0
 | 
			
		||||
142.5
 | 
			
		||||
230.0
 | 
			
		||||
135.0
 | 
			
		||||
197.5
 | 
			
		||||
-179.5
 | 
			
		||||
198.0
 | 
			
		||||
288.0
 | 
			
		||||
200.5
 | 
			
		||||
-222.5
 | 
			
		||||
165.5
 | 
			
		||||
139.0
 | 
			
		||||
228.0
 | 
			
		||||
211.5
 | 
			
		||||
197.5
 | 
			
		||||
102.5
 | 
			
		||||
233.0
 | 
			
		||||
95.5
 | 
			
		||||
-129.0
 | 
			
		||||
187.5
 | 
			
		||||
158.0
 | 
			
		||||
295.0
 | 
			
		||||
240.5
 | 
			
		||||
-222.5
 | 
			
		||||
-1841.5
 | 
			
		||||
198.0
 | 
			
		||||
113.0
 | 
			
		||||
305.0
 | 
			
		||||
-482.5
 | 
			
		||||
125.5
 | 
			
		||||
215.0
 | 
			
		||||
110.0
 | 
			
		||||
-180.0
 | 
			
		||||
170.0
 | 
			
		||||
-62.5
 | 
			
		||||
215.5
 | 
			
		||||
132.5
 | 
			
		||||
187.5
 | 
			
		||||
135.0
 | 
			
		||||
-65.0
 | 
			
		||||
138.0
 | 
			
		||||
-1972.0
 | 
			
		||||
240.5
 | 
			
		||||
-237.5
 | 
			
		||||
610.0
 | 
			
		||||
267.5
 | 
			
		||||
52.5
 | 
			
		||||
-211.5
 | 
			
		||||
217.5
 | 
			
		||||
88.0
 | 
			
		||||
305.5
 | 
			
		||||
165.5
 | 
			
		||||
115.0
 | 
			
		||||
182.5
 | 
			
		||||
-69.5
 | 
			
		||||
333.0
 | 
			
		||||
363.0
 | 
			
		||||
112.5
 | 
			
		||||
-15.5
 | 
			
		||||
150.5
 | 
			
		||||
118.0
 | 
			
		||||
-52.5
 | 
			
		||||
318.0
 | 
			
		||||
174.0
 | 
			
		||||
198.0
 | 
			
		||||
-5705.0
 | 
			
		||||
160.5
 | 
			
		||||
155.0
 | 
			
		||||
125.0
 | 
			
		||||
165.0
 | 
			
		||||
259.0
 | 
			
		||||
165.5
 | 
			
		||||
155.0
 | 
			
		||||
-236.0
 | 
			
		||||
220.5
 | 
			
		||||
-15.5
 | 
			
		||||
117.5
 | 
			
		||||
367.5
 | 
			
		||||
237.5
 | 
			
		||||
255.0
 | 
			
		||||
85.0
 | 
			
		||||
-5342.5
 | 
			
		||||
141.5
 | 
			
		||||
-3582.5
 | 
			
		||||
-600.0
 | 
			
		||||
915.5
 | 
			
		||||
179.0
 | 
			
		||||
190.0
 | 
			
		||||
-47.5
 | 
			
		||||
275.5
 | 
			
		||||
-5.0
 | 
			
		||||
195.0
 | 
			
		||||
128.0
 | 
			
		||||
146.5
 | 
			
		||||
750.5
 | 
			
		||||
153.0
 | 
			
		||||
-5157.5
 | 
			
		||||
-279.5
 | 
			
		||||
219.0
 | 
			
		||||
154.0
 | 
			
		||||
153.0
 | 
			
		||||
-234.5
 | 
			
		||||
248.0
 | 
			
		||||
182.5
 | 
			
		||||
122.5
 | 
			
		||||
155.5
 | 
			
		||||
1078.0
 | 
			
		||||
102.5
 | 
			
		||||
358.0
 | 
			
		||||
152.5
 | 
			
		||||
261.5
 | 
			
		||||
239.0
 | 
			
		||||
128.0
 | 
			
		||||
111.5
 | 
			
		||||
93.0
 | 
			
		||||
310.5
 | 
			
		||||
-87.0
 | 
			
		||||
158.0
 | 
			
		||||
113.0
 | 
			
		||||
165.5
 | 
			
		||||
120.0
 | 
			
		||||
256.5
 | 
			
		||||
90.5
 | 
			
		||||
245.0
 | 
			
		||||
159.0
 | 
			
		||||
160.0
 | 
			
		||||
-5272.0
 | 
			
		||||
-88.5
 | 
			
		||||
159.0
 | 
			
		||||
169.0
 | 
			
		||||
147.5
 | 
			
		||||
-1149.5
 | 
			
		||||
-372.0
 | 
			
		||||
-270.0
 | 
			
		||||
95.0
 | 
			
		||||
142.5
 | 
			
		||||
212.5
 | 
			
		||||
154.0
 | 
			
		||||
425.0
 | 
			
		||||
153.0
 | 
			
		||||
213.0
 | 
			
		||||
280.5
 | 
			
		||||
-80.5
 | 
			
		||||
-45.90000000000003
 | 
			
		||||
-2250.5
 | 
			
		||||
123.50000000000003
 | 
			
		||||
149.40000000000006
 | 
			
		||||
219.0
 | 
			
		||||
108.0
 | 
			
		||||
180.0
 | 
			
		||||
271.19999999999993
 | 
			
		||||
202.5
 | 
			
		||||
121.8000000000001
 | 
			
		||||
47.599999999999966
 | 
			
		||||
-35.0
 | 
			
		||||
281.5
 | 
			
		||||
307.5
 | 
			
		||||
99.80000000000001
 | 
			
		||||
154.0
 | 
			
		||||
166.30000000000004
 | 
			
		||||
271.5
 | 
			
		||||
205.5
 | 
			
		||||
145.5
 | 
			
		||||
265.0
 | 
			
		||||
113.0
 | 
			
		||||
144.0
 | 
			
		||||
88.0
 | 
			
		||||
-204.5
 | 
			
		||||
204.0
 | 
			
		||||
215.0
 | 
			
		||||
177.5
 | 
			
		||||
168.0
 | 
			
		||||
263.0
 | 
			
		||||
66.5
 | 
			
		||||
258.0
 | 
			
		||||
-5477.5
 | 
			
		||||
94.5
 | 
			
		||||
-139.0
 | 
			
		||||
190.5
 | 
			
		||||
160.0
 | 
			
		||||
-35.5
 | 
			
		||||
149.0
 | 
			
		||||
100.5
 | 
			
		||||
130.0
 | 
			
		||||
-40.0
 | 
			
		||||
175.0
 | 
			
		||||
132.5
 | 
			
		||||
107.5
 | 
			
		||||
143.0
 | 
			
		||||
-5097.5
 | 
			
		||||
97.5
 | 
			
		||||
-1880.0
 | 
			
		||||
-15.0
 | 
			
		||||
213.0
 | 
			
		||||
-601.0
 | 
			
		||||
282.5
 | 
			
		||||
276.5
 | 
			
		||||
113.0
 | 
			
		||||
106.5
 | 
			
		||||
-1011.5
 | 
			
		||||
128.0
 | 
			
		||||
150.0
 | 
			
		||||
145.5
 | 
			
		||||
233.0
 | 
			
		||||
209.0
 | 
			
		||||
136.5
 | 
			
		||||
240.0
 | 
			
		||||
7.5
 | 
			
		||||
-1535.0
 | 
			
		||||
238.0
 | 
			
		||||
185.0
 | 
			
		||||
157.5
 | 
			
		||||
-1660.0
 | 
			
		||||
-15.5
 | 
			
		||||
-145.0
 | 
			
		||||
178.0
 | 
			
		||||
-4997.5
 | 
			
		||||
182.5
 | 
			
		||||
197.5
 | 
			
		||||
355.5
 | 
			
		||||
130.0
 | 
			
		||||
232.5
 | 
			
		||||
-5420.0
 | 
			
		||||
190.0
 | 
			
		||||
128.0
 | 
			
		||||
115.0
 | 
			
		||||
2.5
 | 
			
		||||
149.0
 | 
			
		||||
220.0
 | 
			
		||||
-87.0
 | 
			
		||||
-447.5
 | 
			
		||||
-4122.5
 | 
			
		||||
-67.5
 | 
			
		||||
-425.0
 | 
			
		||||
283.0
 | 
			
		||||
925.0
 | 
			
		||||
49.5
 | 
			
		||||
-15.0
 | 
			
		||||
233.0
 | 
			
		||||
215.5
 | 
			
		||||
234.0
 | 
			
		||||
154.0
 | 
			
		||||
141.5
 | 
			
		||||
226.5
 | 
			
		||||
220.0
 | 
			
		||||
110.5
 | 
			
		||||
270.0
 | 
			
		||||
253.0
 | 
			
		||||
-1944.0
 | 
			
		||||
215.0
 | 
			
		||||
250.5
 | 
			
		||||
155.0
 | 
			
		||||
260.5
 | 
			
		||||
185.0
 | 
			
		||||
261.5
 | 
			
		||||
232.5
 | 
			
		||||
177.5
 | 
			
		||||
-97.5
 | 
			
		||||
-196.0
 | 
			
		||||
230.0
 | 
			
		||||
205.5
 | 
			
		||||
-367.0
 | 
			
		||||
265.5
 | 
			
		||||
180.0
 | 
			
		||||
135.5
 | 
			
		||||
139.0
 | 
			
		||||
103.0
 | 
			
		||||
314.0
 | 
			
		||||
192.5
 | 
			
		||||
179.0
 | 
			
		||||
97.5
 | 
			
		||||
52.5
 | 
			
		||||
135.0
 | 
			
		||||
184.0
 | 
			
		||||
-305.0
 | 
			
		||||
147.5
 | 
			
		||||
206.5
 | 
			
		||||
157.5
 | 
			
		||||
243.0
 | 
			
		||||
-6125.0
 | 
			
		||||
257.5
 | 
			
		||||
125.60000000000002
 | 
			
		||||
190.0
 | 
			
		||||
-6225.0
 | 
			
		||||
96.5
 | 
			
		||||
350.0
 | 
			
		||||
193.0
 | 
			
		||||
185.5
 | 
			
		||||
206.5
 | 
			
		||||
223.0
 | 
			
		||||
-225.0
 | 
			
		||||
117.5
 | 
			
		||||
170.0
 | 
			
		||||
223.0
 | 
			
		||||
175.5
 | 
			
		||||
210.0
 | 
			
		||||
-222.0
 | 
			
		||||
148.60000000000002
 | 
			
		||||
-133.0
 | 
			
		||||
-193.5
 | 
			
		||||
152.5
 | 
			
		||||
-152.0
 | 
			
		||||
-6245.0
 | 
			
		||||
-2.0
 | 
			
		||||
50.5
 | 
			
		||||
-140.5
 | 
			
		||||
185.5
 | 
			
		||||
125.5
 | 
			
		||||
208.0
 | 
			
		||||
-200.0
 | 
			
		||||
202.5
 | 
			
		||||
112.5
 | 
			
		||||
119.0
 | 
			
		||||
210.5
 | 
			
		||||
-1199.5
 | 
			
		||||
-2.5
 | 
			
		||||
102.5
 | 
			
		||||
0.5
 | 
			
		||||
275.5
 | 
			
		||||
135.5
 | 
			
		||||
-32.5
 | 
			
		||||
235.5
 | 
			
		||||
-617.0
 | 
			
		||||
110.0
 | 
			
		||||
222.5
 | 
			
		||||
-372.0
 | 
			
		||||
-53.0
 | 
			
		||||
306.5
 | 
			
		||||
117.5
 | 
			
		||||
-5095.0
 | 
			
		||||
223.0
 | 
			
		||||
-257.0
 | 
			
		||||
-5760.0
 | 
			
		||||
11.5
 | 
			
		||||
182.5
 | 
			
		||||
160.0
 | 
			
		||||
325.5
 | 
			
		||||
151.5
 | 
			
		||||
-327.5
 | 
			
		||||
-5655.0
 | 
			
		||||
62.5
 | 
			
		||||
-5550.0
 | 
			
		||||
195.0
 | 
			
		||||
92.5
 | 
			
		||||
-5290.0
 | 
			
		||||
215.0
 | 
			
		||||
59.0
 | 
			
		||||
179.0
 | 
			
		||||
188.0
 | 
			
		||||
-2103.5
 | 
			
		||||
253.0
 | 
			
		||||
118.0
 | 
			
		||||
335.0
 | 
			
		||||
85.0
 | 
			
		||||
207.5
 | 
			
		||||
229.0
 | 
			
		||||
152.5
 | 
			
		||||
-188.5
 | 
			
		||||
-177.5
 | 
			
		||||
274.0
 | 
			
		||||
220.0
 | 
			
		||||
-5169.5
 | 
			
		||||
128.0
 | 
			
		||||
-1260.0
 | 
			
		||||
140.0
 | 
			
		||||
147.5
 | 
			
		||||
140.0
 | 
			
		||||
-505.0
 | 
			
		||||
155.0
 | 
			
		||||
225.5
 | 
			
		||||
188.0
 | 
			
		||||
131.5
 | 
			
		||||
1111.5
 | 
			
		||||
180.0
 | 
			
		||||
-4897.5
 | 
			
		||||
-687.5
 | 
			
		||||
125.0
 | 
			
		||||
180.0
 | 
			
		||||
111.5
 | 
			
		||||
-5582.5
 | 
			
		||||
232.5
 | 
			
		||||
153.0
 | 
			
		||||
-130.5
 | 
			
		||||
102.5
 | 
			
		||||
189.0
 | 
			
		||||
157.5
 | 
			
		||||
-5685.0
 | 
			
		||||
325.0
 | 
			
		||||
-6870.0
 | 
			
		||||
-520.5
 | 
			
		||||
-3027.0
 | 
			
		||||
32.5
 | 
			
		||||
							
								
								
									
										500
									
								
								trainedWinners.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										500
									
								
								trainedWinners.txt
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,500 @@
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
22
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
1
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
3
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
							
								
								
									
										390
									
								
								utilities/Board.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										390
									
								
								utilities/Board.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,390 @@
 | 
			
		||||
from __future__ import annotations
 | 
			
		||||
 | 
			
		||||
import pygame
 | 
			
		||||
from copy import deepcopy
 | 
			
		||||
from .constants import BLACK, ROWS, GREEN, SQUARE_SIZE, COLS, WHITE
 | 
			
		||||
from .piece import Piece
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Board:
 | 
			
		||||
    def __init__(self) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        Constructor for the Board class
 | 
			
		||||
        :return: None
 | 
			
		||||
        """
 | 
			
		||||
        self.board = []
 | 
			
		||||
        self.greenLeft = self.whiteLeft = 12
 | 
			
		||||
        self.greenKings = self.whiteKings = 0
 | 
			
		||||
        self.green = (144, 184, 59)
 | 
			
		||||
        self._createBoard()
 | 
			
		||||
 | 
			
		||||
    def _drawSquares(self, win: pygame.display) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        Draws the squares on the board
 | 
			
		||||
        :param win: The window
 | 
			
		||||
        """
 | 
			
		||||
        win.fill(BLACK)
 | 
			
		||||
        for row in range(ROWS):
 | 
			
		||||
            for col in range(row % 2, ROWS, 2):
 | 
			
		||||
                pygame.draw.rect(win, self.green, (row * SQUARE_SIZE, col * SQUARE_SIZE, SQUARE_SIZE, SQUARE_SIZE))
 | 
			
		||||
 | 
			
		||||
    def _createBoard(self) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        Creates a board representation of the game
 | 
			
		||||
        :return: None
 | 
			
		||||
        """
 | 
			
		||||
        for row in range(ROWS):
 | 
			
		||||
            self.board.append([])
 | 
			
		||||
            for col in range(COLS):
 | 
			
		||||
                if col % 2 == ((row + 1) % 2):
 | 
			
		||||
                    if row < 3:
 | 
			
		||||
                        self.board[row].append(Piece(row, col, WHITE))
 | 
			
		||||
                        continue
 | 
			
		||||
 | 
			
		||||
                    if row > 4:
 | 
			
		||||
                        self.board[row].append(Piece(row, col, GREEN))
 | 
			
		||||
                        continue
 | 
			
		||||
 | 
			
		||||
                    self.board[row].append(0)
 | 
			
		||||
                    continue
 | 
			
		||||
 | 
			
		||||
                self.board[row].append(0)
 | 
			
		||||
 | 
			
		||||
    def draw(self, win: pygame.display) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        Draws the pieces on the board
 | 
			
		||||
        :param win: The window
 | 
			
		||||
        :return: None
 | 
			
		||||
        """
 | 
			
		||||
        self._drawSquares(win)
 | 
			
		||||
        for row in range(ROWS):
 | 
			
		||||
            for col in range(COLS):
 | 
			
		||||
                piece = self.board[row][col]
 | 
			
		||||
                if piece != 0:
 | 
			
		||||
                    piece.draw(win)
 | 
			
		||||
 | 
			
		||||
    def move(self, piece: Piece, row: int, col: int) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        Moves a piece and make it a king if it reaches the end of the board
 | 
			
		||||
        :param piece: Piece to move
 | 
			
		||||
        :param row: Row to move to
 | 
			
		||||
        :param col: Column to move to
 | 
			
		||||
        :return: None
 | 
			
		||||
        """
 | 
			
		||||
        self.board[piece.row][piece.col], self.board[row][col] = self.board[row][col], self.board[piece.row][piece.col]
 | 
			
		||||
        piece.move(row, col)
 | 
			
		||||
 | 
			
		||||
        if row == ROWS - 1 or row == 0:
 | 
			
		||||
            piece.makeKing()
 | 
			
		||||
 | 
			
		||||
            if piece.colour == WHITE:
 | 
			
		||||
                self.whiteKings += 1
 | 
			
		||||
 | 
			
		||||
            if piece.colour == GREEN:
 | 
			
		||||
                self.greenKings += 1
 | 
			
		||||
 | 
			
		||||
    def remove(self, skipped: tuple) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        Removes a piece from the board
 | 
			
		||||
        :param skipped: A tuple of the piece to remove
 | 
			
		||||
        """
 | 
			
		||||
        for piece in skipped:
 | 
			
		||||
            self.board[piece.row][piece.col] = 0
 | 
			
		||||
            if piece != 0:
 | 
			
		||||
                if piece.colour == GREEN:
 | 
			
		||||
                    self.greenLeft -= 1
 | 
			
		||||
                    continue
 | 
			
		||||
                self.whiteLeft -= 1
 | 
			
		||||
 | 
			
		||||
    def getAllMoves(self, colour: int) -> list:
 | 
			
		||||
        """
 | 
			
		||||
        Gets all the possible moves for a player
 | 
			
		||||
        :param colour: colour of the player
 | 
			
		||||
        :return:
 | 
			
		||||
        """
 | 
			
		||||
        moves = []
 | 
			
		||||
        possibleMoves = []
 | 
			
		||||
        possiblePieces = []
 | 
			
		||||
        pieces = self.getAllPieces(colour)
 | 
			
		||||
        hasForcedCapture = False
 | 
			
		||||
 | 
			
		||||
        for piece in pieces:
 | 
			
		||||
            validMoves = self.getValidMoves(piece)
 | 
			
		||||
 | 
			
		||||
            # Check if there are forced capture moves for this piece
 | 
			
		||||
            forcedCaptureMoves = [move for move, skip in validMoves.items() if skip]
 | 
			
		||||
            if forcedCaptureMoves:
 | 
			
		||||
                hasForcedCapture = True
 | 
			
		||||
                possiblePieces.append(piece)
 | 
			
		||||
                possibleMoves.append({move: skip for move, skip in validMoves.items() if skip})
 | 
			
		||||
 | 
			
		||||
        if hasForcedCapture:
 | 
			
		||||
            # If there are forced capture moves, consider only those
 | 
			
		||||
            for i in range(len(possibleMoves)):
 | 
			
		||||
                for move, skip in possibleMoves[i].items():
 | 
			
		||||
                    tempBoard = deepcopy(self)
 | 
			
		||||
                    tempPiece = tempBoard.getPiece(possiblePieces[i].row, possiblePieces[i].col)
 | 
			
		||||
                    newBoard = self._simulateMove(tempPiece, move, tempBoard, skip)
 | 
			
		||||
                    moves.append(newBoard)
 | 
			
		||||
        else:
 | 
			
		||||
            # If no forced capture moves, consider all valid moves
 | 
			
		||||
            for piece in pieces:
 | 
			
		||||
                validMoves = self.getValidMoves(piece)
 | 
			
		||||
                for move, skip in validMoves.items():
 | 
			
		||||
                    tempBoard = deepcopy(self)
 | 
			
		||||
                    tempPiece = tempBoard.getPiece(piece.row, piece.col)
 | 
			
		||||
                    newBoard = self._simulateMove(tempPiece, move, tempBoard, skip)
 | 
			
		||||
                    moves.append(newBoard)
 | 
			
		||||
 | 
			
		||||
        return moves
 | 
			
		||||
 | 
			
		||||
    def _simulateMove(self, piece: Piece, move: list, board: Board, skip: tuple) -> Board:
 | 
			
		||||
        """
 | 
			
		||||
        Simulates a move on the board
 | 
			
		||||
        :param piece: Piece to move
 | 
			
		||||
        :param move:  Move to make
 | 
			
		||||
        :param board: Board to make the move on
 | 
			
		||||
        :param skip: Tuple of pieces to skip
 | 
			
		||||
        :return: Board after the move
 | 
			
		||||
        """
 | 
			
		||||
        board.move(piece, move[0], move[1])
 | 
			
		||||
        if skip:
 | 
			
		||||
            board.remove(skip)
 | 
			
		||||
 | 
			
		||||
        return board
 | 
			
		||||
 | 
			
		||||
    def getPiece(self, row: int, col: int) -> Piece:
 | 
			
		||||
        """
 | 
			
		||||
        Gets a piece from the board
 | 
			
		||||
        :param row: Row of the piece
 | 
			
		||||
        :param col: Column of the piece
 | 
			
		||||
        :return: Piece
 | 
			
		||||
        """
 | 
			
		||||
        return self.board[row][col]
 | 
			
		||||
 | 
			
		||||
    def winner(self):
 | 
			
		||||
        if self.greenLeft <= 0:
 | 
			
		||||
            return WHITE
 | 
			
		||||
 | 
			
		||||
        if self.whiteLeft <= 0:
 | 
			
		||||
            return GREEN
 | 
			
		||||
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
    def getValidMoves(self, piece: Piece) -> dict:
 | 
			
		||||
        """
 | 
			
		||||
        Gets all the valid moves for a piece
 | 
			
		||||
        :param piece: Piece to get the moves for
 | 
			
		||||
        :return: dictionary of moves
 | 
			
		||||
        """
 | 
			
		||||
        moves = {}
 | 
			
		||||
        forcedCapture = {}
 | 
			
		||||
        left = piece.col - 1
 | 
			
		||||
        right = piece.col + 1
 | 
			
		||||
        row = piece.row
 | 
			
		||||
        if piece.colour == GREEN or piece.king:
 | 
			
		||||
            moves.update(self._traverseLeft(row - 1, max(row - 3, -1), -1, piece.colour, left))
 | 
			
		||||
            moves.update(self._traverseRight(row - 1, max(row - 3, -1), -1, piece.colour, right))
 | 
			
		||||
        if piece.colour == WHITE or piece.king:
 | 
			
		||||
            moves.update(self._traverseLeft(row + 1, min(row + 3, ROWS), 1, piece.colour, left))
 | 
			
		||||
            moves.update(self._traverseRight(row + 1, min(row + 3, ROWS), 1, piece.colour, right))
 | 
			
		||||
 | 
			
		||||
        if len(moves.values()) <= 1:
 | 
			
		||||
            return moves
 | 
			
		||||
 | 
			
		||||
        movesValues = list(moves.values())
 | 
			
		||||
        movesKeys = list(moves.keys())
 | 
			
		||||
 | 
			
		||||
        forced = {}
 | 
			
		||||
 | 
			
		||||
        for i in range(len(movesKeys)):
 | 
			
		||||
            if not movesValues[i]:
 | 
			
		||||
                forced[movesKeys[i]] = moves[movesKeys[i]]
 | 
			
		||||
        if len(forced) != len(moves):
 | 
			
		||||
            forced.clear()
 | 
			
		||||
            for i in range(len(movesKeys)):
 | 
			
		||||
                if movesValues[i]:
 | 
			
		||||
                    forced[movesKeys[i]] = moves[movesKeys[i]]
 | 
			
		||||
            if len(forced) != len(moves):
 | 
			
		||||
                for i in range(len(movesKeys)):
 | 
			
		||||
                    if movesValues[i]:
 | 
			
		||||
                        forcedCapture[movesKeys[i]] = moves[movesKeys[i]]
 | 
			
		||||
            else:
 | 
			
		||||
                forcedCapture = forced
 | 
			
		||||
        else:
 | 
			
		||||
            forcedCapture = forced
 | 
			
		||||
 | 
			
		||||
        return forcedCapture
 | 
			
		||||
 | 
			
		||||
    def scoreOfTheBoard(self) -> int:
 | 
			
		||||
        """
 | 
			
		||||
        Calculates the score of the board
 | 
			
		||||
        :return: score of the board
 | 
			
		||||
        """
 | 
			
		||||
        return self.whiteLeft - self.greenLeft
 | 
			
		||||
 | 
			
		||||
    def getAllPieces(self, colour):
 | 
			
		||||
        """
 | 
			
		||||
        Gets all the pieces of a player
 | 
			
		||||
        :param colour: Piece colour
 | 
			
		||||
        :return: Pieces of the player
 | 
			
		||||
        """
 | 
			
		||||
        pieces = []
 | 
			
		||||
        for row in self.board:
 | 
			
		||||
            for piece in row:
 | 
			
		||||
                if piece != 0 and piece.colour == colour:
 | 
			
		||||
                    pieces.append(piece)
 | 
			
		||||
        return pieces
 | 
			
		||||
 | 
			
		||||
    def _traverseLeft(self, start: int, stop: int, step: int, colour: int, left: int, skipped: list = []) -> dict:
 | 
			
		||||
        """
 | 
			
		||||
        Traverses the left side of the board
 | 
			
		||||
        :param start: Start position
 | 
			
		||||
        :param stop:  Stop position
 | 
			
		||||
        :param step:  Step size
 | 
			
		||||
        :param colour: colour of the player
 | 
			
		||||
        :param left: Left position
 | 
			
		||||
        :param skipped: List of pieces to skip
 | 
			
		||||
        :return: dictionary of moves
 | 
			
		||||
        """
 | 
			
		||||
        moves = {}
 | 
			
		||||
        last = []
 | 
			
		||||
        for row in range(start, stop, step):
 | 
			
		||||
            if left < 0:
 | 
			
		||||
                break
 | 
			
		||||
            mvs = self._traverse(row, left, skipped, moves, step, last, colour)
 | 
			
		||||
            if mvs is None:
 | 
			
		||||
                break
 | 
			
		||||
            elif isinstance(mvs, list):
 | 
			
		||||
                last = mvs
 | 
			
		||||
            else:
 | 
			
		||||
                moves.update(mvs)
 | 
			
		||||
            left -= 1
 | 
			
		||||
        return moves
 | 
			
		||||
 | 
			
		||||
    def _traverseRight(self, start: int, stop: int, step: int, colour: int, right: int, skipped: list = []) -> dict:
 | 
			
		||||
        """
 | 
			
		||||
        Traverses the left side of the board
 | 
			
		||||
        :param start: Start position
 | 
			
		||||
        :param stop:  Stop position
 | 
			
		||||
        :param step:  Step size
 | 
			
		||||
        :param colour: colour of the player
 | 
			
		||||
        :param right: Right position
 | 
			
		||||
        :param skipped: List of pieces to skip
 | 
			
		||||
        :return: dictionary of moves
 | 
			
		||||
        """
 | 
			
		||||
        moves = {}
 | 
			
		||||
        last = []
 | 
			
		||||
        for row in range(start, stop, step):
 | 
			
		||||
            if right >= COLS:
 | 
			
		||||
                break
 | 
			
		||||
 | 
			
		||||
            mvs = self._traverse(row, right, skipped, moves, step, last, colour)
 | 
			
		||||
            if mvs is None:
 | 
			
		||||
                break
 | 
			
		||||
            elif isinstance(mvs, list):
 | 
			
		||||
                last = mvs
 | 
			
		||||
            else:
 | 
			
		||||
                moves.update(mvs)
 | 
			
		||||
 | 
			
		||||
            right += 1
 | 
			
		||||
        return moves
 | 
			
		||||
 | 
			
		||||
    def _traverse(self, row: int, col: int, skipped: list, moves: dict, step: int, last: list, colour: int) -> list or None:
 | 
			
		||||
        """
 | 
			
		||||
        Traverses the board
 | 
			
		||||
        :param row: Row to traverse
 | 
			
		||||
        :param col: Column to traverse
 | 
			
		||||
        :param skipped: List of pieces to jump
 | 
			
		||||
        :param moves: Dictionary of moves
 | 
			
		||||
        :param step: Step size
 | 
			
		||||
        :param last: List of last pieces
 | 
			
		||||
        :param colour: Colour of the player
 | 
			
		||||
        :return: list of last pieces or None
 | 
			
		||||
        """
 | 
			
		||||
        current = self.board[row][col]
 | 
			
		||||
        if current == 0:
 | 
			
		||||
            if skipped and not last:
 | 
			
		||||
                return None
 | 
			
		||||
            elif skipped:
 | 
			
		||||
                moves[(row, col)] = last + skipped
 | 
			
		||||
            else:
 | 
			
		||||
                moves[(row, col)] = last
 | 
			
		||||
 | 
			
		||||
            if last:
 | 
			
		||||
                if step == -1:
 | 
			
		||||
                    rowCalc = max(row - 3, 0)
 | 
			
		||||
                else:
 | 
			
		||||
                    rowCalc = min(row + 3, ROWS)
 | 
			
		||||
                moves.update(self._traverseLeft(row + step, rowCalc, step, colour, col - 1, skipped=last))
 | 
			
		||||
                moves.update(self._traverseRight(row + step, rowCalc, step, colour, col + 1, skipped=last))
 | 
			
		||||
            return None
 | 
			
		||||
        elif current.colour == colour:
 | 
			
		||||
            return None
 | 
			
		||||
        else:
 | 
			
		||||
            last = [current]
 | 
			
		||||
            return last
 | 
			
		||||
 | 
			
		||||
    def step(self, move: int, colour: int) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        Takes a move and executes it
 | 
			
		||||
        :param move: The move to execute
 | 
			
		||||
        :param colour: The colour of the player
 | 
			
		||||
        :return: None
 | 
			
		||||
        """
 | 
			
		||||
        start, end = self._decode(move)
 | 
			
		||||
        start[0] = start[0] - 1
 | 
			
		||||
        start[1] = start[1] - 1
 | 
			
		||||
        end[0] = end[0] - 1
 | 
			
		||||
        end[1] = end[1] - 1
 | 
			
		||||
        reward = 0
 | 
			
		||||
        done = False
 | 
			
		||||
        piece = self.getPiece(start[0], start[1])
 | 
			
		||||
        if piece == 0:
 | 
			
		||||
            newStart = end
 | 
			
		||||
            end = start
 | 
			
		||||
            start = newStart
 | 
			
		||||
            piece = self.getPiece(start[0], start[1])
 | 
			
		||||
        moves = self.getValidMoves(piece)
 | 
			
		||||
        for move, skip in moves.items():
 | 
			
		||||
            if tuple(end) == move:
 | 
			
		||||
                self._simulateMove(piece, move, self, skip)
 | 
			
		||||
                if len(skip) == 1:
 | 
			
		||||
                    reward = 2
 | 
			
		||||
                    break
 | 
			
		||||
                if len(skip) > 1:
 | 
			
		||||
                    reward = 3 + len(skip) * 0.2
 | 
			
		||||
                    break
 | 
			
		||||
                reward = -0.5
 | 
			
		||||
                break
 | 
			
		||||
 | 
			
		||||
        if self.winner() == colour:
 | 
			
		||||
            done = True
 | 
			
		||||
            reward = 10
 | 
			
		||||
        return reward, self, done
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    def _decode(self, move: int) -> tuple:
 | 
			
		||||
        """
 | 
			
		||||
        Decodes the move from a integer to a start and end tuple
 | 
			
		||||
        :param move: The move to decode
 | 
			
		||||
        :return: Start and end tuple
 | 
			
		||||
        """
 | 
			
		||||
        # Split digits back out
 | 
			
		||||
        str_code = str(move)
 | 
			
		||||
        # print(str_code)
 | 
			
		||||
        start_row = int(str_code[0])
 | 
			
		||||
        start_col = int(str_code[1])
 | 
			
		||||
        end_row = int(str_code[2])
 | 
			
		||||
        end_col = int(str_code[3])
 | 
			
		||||
        # Reconstruct positions
 | 
			
		||||
        start = [start_row, start_col]
 | 
			
		||||
        end = [end_row, end_col]
 | 
			
		||||
        return start, end
 | 
			
		||||
 | 
			
		||||
    # def reset(self):
 | 
			
		||||
    #     self.board = []
 | 
			
		||||
    #     self.whiteLeft = self.greenLeft = 12
 | 
			
		||||
    #     self.whiteKings = self.greenKings = 0
 | 
			
		||||
    #     self._createBoard()
 | 
			
		||||
    #     return self.board
 | 
			
		||||
@ -1,185 +0,0 @@
 | 
			
		||||
import pygame
 | 
			
		||||
 | 
			
		||||
from .constants import BLACK, ROWS, GREEN, SQUARE_SIZE, COLS, WHITE
 | 
			
		||||
from .piece import Piece
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Board:
 | 
			
		||||
    def __init__(self):
 | 
			
		||||
        self.board = []
 | 
			
		||||
        self.greenLeft = self.whiteLeft = 12
 | 
			
		||||
        self.greenKings = self.whiteKings = 0
 | 
			
		||||
        self.createBoard()
 | 
			
		||||
 | 
			
		||||
    def drawSquares(self, win):
 | 
			
		||||
        win.fill(BLACK)
 | 
			
		||||
        for row in range(ROWS):
 | 
			
		||||
            for col in range(row % 2, ROWS, 2):
 | 
			
		||||
                pygame.draw.rect(win, GREEN, (row * SQUARE_SIZE, col * SQUARE_SIZE, SQUARE_SIZE, SQUARE_SIZE))
 | 
			
		||||
 | 
			
		||||
    def createBoard(self):
 | 
			
		||||
        for row in range(ROWS):
 | 
			
		||||
            self.board.append([])
 | 
			
		||||
            for col in range(COLS):
 | 
			
		||||
                if col % 2 == ((row + 1) % 2):
 | 
			
		||||
                    if row < 3:
 | 
			
		||||
                        self.board[row].append(Piece(row, col, WHITE))
 | 
			
		||||
                    elif row > 4:
 | 
			
		||||
                        self.board[row].append(Piece(row, col, GREEN))
 | 
			
		||||
                    else:
 | 
			
		||||
                        self.board[row].append(None)
 | 
			
		||||
                else:
 | 
			
		||||
                    self.board[row].append(None)
 | 
			
		||||
 | 
			
		||||
    def draw(self, win):
 | 
			
		||||
        self.drawSquares(win)
 | 
			
		||||
        for row in range(ROWS):
 | 
			
		||||
            for col in range(COLS):
 | 
			
		||||
                piece = self.board[row][col]
 | 
			
		||||
                if piece is not None:
 | 
			
		||||
                    piece.draw(win)
 | 
			
		||||
 | 
			
		||||
    def move(self, piece, row, col):
 | 
			
		||||
        self.board[piece.row][piece.col], self.board[row][col] = self.board[row][col], self.board[piece.row][piece.col]
 | 
			
		||||
        piece.move(row, col)
 | 
			
		||||
 | 
			
		||||
        if row == ROWS - 1 or row == 0:
 | 
			
		||||
            piece.makeKing()
 | 
			
		||||
        if piece.colour == WHITE:
 | 
			
		||||
            self.whiteKings += 1
 | 
			
		||||
        else:
 | 
			
		||||
            self.greenKings += 1
 | 
			
		||||
 | 
			
		||||
    def remove(self, skipped):
 | 
			
		||||
        for piece in skipped:
 | 
			
		||||
            self.board[piece.row][piece.col] = None
 | 
			
		||||
            if piece is not None:
 | 
			
		||||
                if piece.colour == GREEN:
 | 
			
		||||
                    self.greenLeft -= 1
 | 
			
		||||
                else:
 | 
			
		||||
                    self.whiteLeft -= 1
 | 
			
		||||
 | 
			
		||||
    def getPiece(self, row, col):
 | 
			
		||||
        return self.board[row][col]
 | 
			
		||||
 | 
			
		||||
    def winner(self):
 | 
			
		||||
        if self.greenLeft <= 0:
 | 
			
		||||
            return WHITE
 | 
			
		||||
        elif self.whiteLeft <= 0:
 | 
			
		||||
            return GREEN
 | 
			
		||||
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
    def getValidMoves(self, piece):
 | 
			
		||||
        moves = {}
 | 
			
		||||
        forcedCapture = {}
 | 
			
		||||
        left = piece.col - 1
 | 
			
		||||
        right = piece.col + 1
 | 
			
		||||
        row = piece.row
 | 
			
		||||
        if piece.colour == GREEN:
 | 
			
		||||
            moves.update(self._traverseLeft(row - 1, max(row - 3, -1), -1, piece.colour, left))
 | 
			
		||||
            moves.update(self._traverseRight(row - 1, max(row - 3, -1), -1, piece.colour, right))
 | 
			
		||||
        if piece.colour == WHITE:
 | 
			
		||||
            moves.update(self._traverseLeft(row + 1, min(row + 3, ROWS), 1, piece.colour, left))
 | 
			
		||||
            moves.update(self._traverseRight(row + 1, min(row + 3, ROWS), 1, piece.colour, right))
 | 
			
		||||
 | 
			
		||||
        if piece.king:
 | 
			
		||||
            moves.update(self._traverseLeft(row - 1, max(row - 3, -1), -1, piece.colour, left))
 | 
			
		||||
            moves.update(self._traverseRight(row - 1, max(row - 3, -1), -1, piece.colour, right))
 | 
			
		||||
            moves.update(self._traverseLeft(row + 1, min(row + 3, ROWS), 1, piece.colour, left))
 | 
			
		||||
            moves.update(self._traverseRight(row + 1, min(row + 3, ROWS), 1, piece.colour, right))
 | 
			
		||||
 | 
			
		||||
        if len(moves.values()) <= 1:
 | 
			
		||||
            return moves
 | 
			
		||||
 | 
			
		||||
        movesValues = list(moves.values())
 | 
			
		||||
        movesKeys = list(moves.keys())
 | 
			
		||||
 | 
			
		||||
        forced = {}
 | 
			
		||||
 | 
			
		||||
        for i in range(len(movesKeys)):
 | 
			
		||||
            if not movesValues[i]:
 | 
			
		||||
                forced[movesKeys[i]] = moves[movesKeys[i]]
 | 
			
		||||
        if len(forced) != len(moves):
 | 
			
		||||
            forced.clear()
 | 
			
		||||
            for i in range(len(movesKeys)):
 | 
			
		||||
                if movesValues[i]:
 | 
			
		||||
                    forced[movesKeys[i]] = moves[movesKeys[i]]
 | 
			
		||||
            if len(forced) != len(moves):
 | 
			
		||||
                for i in range(len(movesKeys)):
 | 
			
		||||
                    if movesValues[i]:
 | 
			
		||||
                        forcedCapture[movesKeys[i]] = moves[movesKeys[i]]
 | 
			
		||||
            else:
 | 
			
		||||
                forcedCapture = forced
 | 
			
		||||
        else:
 | 
			
		||||
            forcedCapture = forced
 | 
			
		||||
        return forcedCapture
 | 
			
		||||
 | 
			
		||||
    def scoreOfTheBoard(self):
 | 
			
		||||
        return self.whiteLeft - self.greenLeft
 | 
			
		||||
 | 
			
		||||
    def getAllPieces(self, colour):
 | 
			
		||||
        pieces = []
 | 
			
		||||
        for row in self.board:
 | 
			
		||||
            for piece in row:
 | 
			
		||||
                if piece is not None and piece.colour == colour:
 | 
			
		||||
                    pieces.append(piece)
 | 
			
		||||
        return pieces
 | 
			
		||||
 | 
			
		||||
    def _traverseLeft(self, start, stop, step, colour, left, skipped=[]):
 | 
			
		||||
        moves = {}
 | 
			
		||||
        last = []
 | 
			
		||||
        for row in range(start, stop, step):
 | 
			
		||||
            if left < 0:
 | 
			
		||||
                break
 | 
			
		||||
            mvs = self._traverse(row, left, skipped, moves, step, last, colour)
 | 
			
		||||
            if mvs is None:
 | 
			
		||||
                break
 | 
			
		||||
            elif isinstance(mvs, list):
 | 
			
		||||
                last = mvs
 | 
			
		||||
            else:
 | 
			
		||||
                moves.update(mvs)
 | 
			
		||||
            left -= 1
 | 
			
		||||
        return moves
 | 
			
		||||
 | 
			
		||||
    def _traverseRight(self, start, stop, step, colour, right, skipped=[]):
 | 
			
		||||
        moves = {}
 | 
			
		||||
        last = []
 | 
			
		||||
        for row in range(start, stop, step):
 | 
			
		||||
            if right >= COLS:
 | 
			
		||||
                break
 | 
			
		||||
 | 
			
		||||
            mvs = self._traverse(row, right, skipped, moves, step, last, colour)
 | 
			
		||||
            if mvs is None:
 | 
			
		||||
                break
 | 
			
		||||
            elif isinstance(mvs, list):
 | 
			
		||||
                last = mvs
 | 
			
		||||
            else:
 | 
			
		||||
                moves.update(mvs)
 | 
			
		||||
 | 
			
		||||
            right += 1
 | 
			
		||||
        return moves
 | 
			
		||||
 | 
			
		||||
    def _traverse(self, row, col, skipped, moves, step, last, colour):
 | 
			
		||||
        current = self.board[row][col]
 | 
			
		||||
        if current is None:
 | 
			
		||||
            if skipped and not last:
 | 
			
		||||
                return None
 | 
			
		||||
            elif skipped:
 | 
			
		||||
                moves[(row, col)] = last + skipped
 | 
			
		||||
            else:
 | 
			
		||||
                moves[(row, col)] = last
 | 
			
		||||
 | 
			
		||||
            if last:
 | 
			
		||||
                if step == -1:
 | 
			
		||||
                    rowCalc = max(row - 3, 0)
 | 
			
		||||
                else:
 | 
			
		||||
                    rowCalc = min(row + 3, ROWS)
 | 
			
		||||
                moves.update(self._traverseLeft(row + step, rowCalc, step, colour, col - 1, skipped=last))
 | 
			
		||||
                moves.update(self._traverseRight(row + step, rowCalc, step, colour, col + 1, skipped=last))
 | 
			
		||||
            return None
 | 
			
		||||
        elif current.colour == colour:
 | 
			
		||||
            return None
 | 
			
		||||
        else:
 | 
			
		||||
            last = [current]
 | 
			
		||||
            return last
 | 
			
		||||
@ -4,10 +4,10 @@ WIDTH, HEIGHT = 800, 800
 | 
			
		||||
ROWS, COLS = 8, 8
 | 
			
		||||
SQUARE_SIZE = WIDTH // COLS
 | 
			
		||||
 | 
			
		||||
# RGB color
 | 
			
		||||
# RGB colour
 | 
			
		||||
 | 
			
		||||
GREEN = (144, 184, 59)
 | 
			
		||||
WHITE = (255, 255, 255)
 | 
			
		||||
GREEN = 1
 | 
			
		||||
WHITE = 2
 | 
			
		||||
BLACK = (0, 0, 0)
 | 
			
		||||
BLUE = (0, 0, 255)
 | 
			
		||||
GREY = (128, 128, 128)
 | 
			
		||||
 | 
			
		||||
@ -1,42 +1,74 @@
 | 
			
		||||
from __future__ import annotations
 | 
			
		||||
 | 
			
		||||
import pygame
 | 
			
		||||
from utilities.board import Board
 | 
			
		||||
from utilities.Board import Board
 | 
			
		||||
from utilities.constants import GREEN, WHITE, BLUE, SQUARE_SIZE
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class GameManager:
 | 
			
		||||
    def __init__(self, win, colour):
 | 
			
		||||
    def __init__(self, win: pygame.display, colour: int) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        Constructor for the GameManager class
 | 
			
		||||
        :param win: The window
 | 
			
		||||
        :param colour: The colour of the player
 | 
			
		||||
        """
 | 
			
		||||
        self._init(colour)
 | 
			
		||||
        self.win = win
 | 
			
		||||
 | 
			
		||||
    def _init(self, colour):
 | 
			
		||||
    def _init(self, colour: int) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        Initializes the game
 | 
			
		||||
        :param colour: the colour of the player
 | 
			
		||||
        """
 | 
			
		||||
        self.selected = None
 | 
			
		||||
        self.board = Board()
 | 
			
		||||
        self.turn = colour
 | 
			
		||||
        self.validMoves = {}
 | 
			
		||||
        self.legCount = 0
 | 
			
		||||
 | 
			
		||||
    def update(self):
 | 
			
		||||
    def update(self) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        Updates the GUI
 | 
			
		||||
        return: None
 | 
			
		||||
        """
 | 
			
		||||
        self.board.draw(self.win)
 | 
			
		||||
        self.drawValidMoves(self.validMoves)
 | 
			
		||||
        pygame.display.update()
 | 
			
		||||
 | 
			
		||||
    def reset(self):
 | 
			
		||||
    def reset(self) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        Resets the game
 | 
			
		||||
        :return: None
 | 
			
		||||
        """
 | 
			
		||||
        self._init(self.turn)
 | 
			
		||||
 | 
			
		||||
    def select(self, row, col):
 | 
			
		||||
    def select(self, row: int, col: int) -> bool:
 | 
			
		||||
        """
 | 
			
		||||
        Selects a piece
 | 
			
		||||
        :param row: Row of the piece
 | 
			
		||||
        :param col: Column of the piece
 | 
			
		||||
        :return: True
 | 
			
		||||
        """
 | 
			
		||||
        if self.selected:
 | 
			
		||||
            result = self._move(row, col)
 | 
			
		||||
            if not result:
 | 
			
		||||
                self.selected = None
 | 
			
		||||
                self.select(row, col)
 | 
			
		||||
        piece = self.board.getPiece(row, col)
 | 
			
		||||
        if piece is not None and piece.colour == self.turn:
 | 
			
		||||
        if piece != 0 and piece.colour == self.turn:
 | 
			
		||||
            self.selected = piece
 | 
			
		||||
            self.validMoves = self.board.getValidMoves(piece)
 | 
			
		||||
            return True
 | 
			
		||||
 | 
			
		||||
    def _move(self, row, col):
 | 
			
		||||
    def _move(self, row: int, col: int) -> bool:
 | 
			
		||||
        """
 | 
			
		||||
        Moves a piece
 | 
			
		||||
        :param row: Row of the piece
 | 
			
		||||
        :param col: Column of the piece
 | 
			
		||||
        :return: True if the move was successful, False otherwise
 | 
			
		||||
        """
 | 
			
		||||
        piece = self.board.getPiece(row, col)
 | 
			
		||||
        if self.selected and piece is None and (row, col) in self.validMoves:
 | 
			
		||||
        if self.selected and piece == 0 and (row, col) in self.validMoves:
 | 
			
		||||
            self.board.move(self.selected, row, col)
 | 
			
		||||
            skipped = self.validMoves[row, col]
 | 
			
		||||
            if self.validMoves[list(self.validMoves.keys())[0]]:
 | 
			
		||||
@ -58,21 +90,39 @@ class GameManager:
 | 
			
		||||
        self.validMoves = {}
 | 
			
		||||
        if self.turn == GREEN:
 | 
			
		||||
            self.turn = WHITE
 | 
			
		||||
        else:
 | 
			
		||||
            self.turn = GREEN
 | 
			
		||||
            return
 | 
			
		||||
        self.turn = GREEN
 | 
			
		||||
 | 
			
		||||
    def drawValidMoves(self, moves):
 | 
			
		||||
    def drawValidMoves(self, moves: list) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        Draws the valid moves
 | 
			
		||||
        :param moves: list of valid moves
 | 
			
		||||
        :return: None
 | 
			
		||||
        """
 | 
			
		||||
        for row, col in moves:
 | 
			
		||||
            pygame.draw.circle(self.win, BLUE,
 | 
			
		||||
                               (col * SQUARE_SIZE + SQUARE_SIZE // 2, row * SQUARE_SIZE + SQUARE_SIZE // 2), 15)
 | 
			
		||||
 | 
			
		||||
    def winner(self):
 | 
			
		||||
    def winner(self) -> int or None:
 | 
			
		||||
        """
 | 
			
		||||
        Gets the winner
 | 
			
		||||
        :return: The winner
 | 
			
		||||
        """
 | 
			
		||||
        return self.board.winner()
 | 
			
		||||
 | 
			
		||||
    def getBoard(self):
 | 
			
		||||
    def getBoard(self) -> Board:
 | 
			
		||||
        """
 | 
			
		||||
        Gets the board
 | 
			
		||||
        :return: The board
 | 
			
		||||
        """
 | 
			
		||||
        return self.board
 | 
			
		||||
 | 
			
		||||
    def aiMove(self, board):
 | 
			
		||||
    def aiMove(self, board: Board) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        Makes a move for the AI
 | 
			
		||||
        :param board: The new board
 | 
			
		||||
        :return: None
 | 
			
		||||
        """
 | 
			
		||||
        if board is None:
 | 
			
		||||
            # colour = "green" if self.turn == GREEN else "white"
 | 
			
		||||
            # print("no move left for " + colour + " to make")
 | 
			
		||||
 | 
			
		||||
@ -1,10 +1,16 @@
 | 
			
		||||
import pygame.draw
 | 
			
		||||
 | 
			
		||||
from utilities.constants import SQUARE_SIZE, GREY, CROWN
 | 
			
		||||
from utilities.constants import SQUARE_SIZE, GREY, CROWN, GREEN
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Piece:
 | 
			
		||||
    def __init__(self, row, col, colour):
 | 
			
		||||
    def __init__(self, row: int, col: int, colour: int) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        Initialises the piece class, which represents a piece on the board. Constructor for the piece class
 | 
			
		||||
        :param row: Row of the piece
 | 
			
		||||
        :param col: Column of the piece
 | 
			
		||||
        :param colour: Colour of the piece
 | 
			
		||||
        """
 | 
			
		||||
        self.row = row
 | 
			
		||||
        self.col = col
 | 
			
		||||
        self.colour = colour
 | 
			
		||||
@ -14,25 +20,50 @@ class Piece:
 | 
			
		||||
        self.calcPosition()
 | 
			
		||||
        self.padding = 20
 | 
			
		||||
        self.border = 2
 | 
			
		||||
        self.green = (144, 184, 59)
 | 
			
		||||
        self.white = (255, 255, 255)
 | 
			
		||||
 | 
			
		||||
    def calcPosition(self):
 | 
			
		||||
    def calcPosition(self) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        Calculates the position of the piece
 | 
			
		||||
        :return: None
 | 
			
		||||
        """
 | 
			
		||||
        self.x = SQUARE_SIZE * self.col + SQUARE_SIZE // 2
 | 
			
		||||
        self.y = SQUARE_SIZE * self.row + SQUARE_SIZE // 2
 | 
			
		||||
 | 
			
		||||
    def makeKing(self):
 | 
			
		||||
    def makeKing(self) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        Makes the piece a king
 | 
			
		||||
        :return: None
 | 
			
		||||
        """
 | 
			
		||||
        self.king = True
 | 
			
		||||
 | 
			
		||||
    def draw(self, win):
 | 
			
		||||
    def draw(self, win) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        Draws the piece
 | 
			
		||||
        :param win: The window to draw the piece on
 | 
			
		||||
        :return: None
 | 
			
		||||
        """
 | 
			
		||||
        radius = SQUARE_SIZE // 2 - self.padding
 | 
			
		||||
        pygame.draw.circle(win, GREY, (self.x, self.y), radius + self.border)
 | 
			
		||||
        pygame.draw.circle(win, self.colour, (self.x, self.y), radius)
 | 
			
		||||
        pygame.draw.circle(win, self.green if self.colour == GREEN else self.white, (self.x, self.y), radius)
 | 
			
		||||
        if self.king:
 | 
			
		||||
            win.blit(CROWN, (self.x - CROWN.get_width() // 2, self.y - CROWN.get_height() // 2))
 | 
			
		||||
 | 
			
		||||
    def move(self, row, col):
 | 
			
		||||
    def move(self, row: int, col: int) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        Moves the piece to a new position
 | 
			
		||||
        :param row: Row to move to
 | 
			
		||||
        :param col: Column to move to
 | 
			
		||||
        :return: None
 | 
			
		||||
        """
 | 
			
		||||
        self.row = row
 | 
			
		||||
        self.col = col
 | 
			
		||||
        self.calcPosition()
 | 
			
		||||
 | 
			
		||||
    def __repr__(self):
 | 
			
		||||
    def __repr__(self) -> str:
 | 
			
		||||
        """
 | 
			
		||||
        String representation of the piece
 | 
			
		||||
        :return: String representation of the colour
 | 
			
		||||
        """
 | 
			
		||||
        return str(self.colour)
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										100
									
								
								winners-3.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										100
									
								
								winners-3.txt
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,100 @@
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
							
								
								
									
										100
									
								
								winners-5.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										100
									
								
								winners-5.txt
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,100 @@
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
0
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
1
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
2
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user